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Abstract
Range images may be used for a variety of applications in object recognition, inspection
and reverse engineering. In many of these applications it is important to obtain good
estimates of the local surface curvature. Good curvature estimates require good deriva-
tive estimates, but the estimation of derivatives from sampled data is highly susceptible
to noise. In this paper we introduce a new way of characterizing range data by a single
parameter. From this characterization we show how to make an optimal choice of what-
ever parameters there are in a particular derivative estimation method, and obtain an
estimate of the error one might expect. Finally we demonstrate how this analysis can be
applied to measuring the curvature of a cylinder.

1 Introduction

Range images may be used for a variety of applications in object recognition,
inspection and reverse engineering. In many of these applications it is important
to obtain good estimates of the local differential properties. Properties such as
normals or slopes depend on first derivatives, and various curvature properties
such as the principal curvatures, mean and Gaussian curvature all depend on both
first and second derivatives.

Derivative estimates [1, 2, 3] from noisy sampled data are difficult to compute
for two main reasons. Firstly, the data may include discontinuities in value (C°
discontinuities), slope (C1 discontinuities), or higher derivatives. Secondly, be-
cause derivatives are computed by local differencing operations they are sensitive
to noise. To solve the second problem it is common to smooth the data, but this
runs the risk of concealing small discontinuities, and smoothing out features that
we wish to observe.

In this paper we address the problem of estimating derivatives from noisy
data obtained from a smooth surface. In particular we consider the problem of
estimating derivatives from a dense range image of height measurements on a
regular grid. In this paper we consider only one derivative estimation method, the
weighted facet model. However our analysis applies to any filter based derivative
estimation method.

We will ignore the problem of discontinuity detection, and assume that our
image contains no discontinuities. Even if there are discontinuities present in a
range image, a method of obtaining good derivative estimates in interior regions
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is still required. Once the discontinuities have been detected the method can be
applied to all the data using a method such as normalized convolution [4].

Almost all methods of derivative estimation involve one or more parameters.
These parameters relate to filter sizes or the smoothing window sizes and possibly
the order of the method, e.g. order of polynomial fit. (We consider smoothing
to be part of derivative estimation.) It is possible to spend considerable time in
choosing an appropriate parameter, typically by trial and error. If the sample or
sensor characteristics change, then the previous choices of parameters may not be
relevant.

In this paper we introduce a new way of characterizing range data by a single
parameter which we call the variation length. This enables comparison between
data sets obtained under widely varying conditions. From this characterization
we show how to make an optimal choice of whatever parameters there are in a
particular derivative estimation method, and obtain an estimate of the error one
might expect. We do not directly address the question of curvature, but simply
note that it is usually computed in a standard way from derivative data [3]. Finally
we look at a common example, the cylinder, and apply the analysis.

What do we mean by an optimal parameter choice? Consider the two sources
of error in our estimate of a derivative. The measurements will be corrupted by
noise, and as a result the estimate will be corrupted by a measurement error.
There will also be some systematic error in our estimate which is intrinsic to the
method.

Suppose the parameter we must choose is a length (neighborhood) over which
we must smooth. For zero smoothing our estimate will be very sensitive to mea-
surement noise, but as we increase the smoothing length we will reduce the mea-
surement noise and obtain a better estimate. However the data will have some
significant scale of variation. When we smooth too much the systematic error will
grow, for example we will start to smooth out real features. We must choose the
smoothing length to balance out these two competing effects. It will then be an
optimal choice, and the estimate will be the best possible estimate given the data
and that particular method.

Before continuing we discuss briefly some previous work. Flynn and Jain [1]
have conducted an empirical study of five different curvature estimation tech-
niques. More recently Lee and Haralick [2] made a detailed performance charac-
terization of the estimation of curvature from noisy sampled data. They study
planar curve fitting to a ordered sequence of points, and provide a framework for
performance evaluation. We base our strategy for optimal parameter choice on
this kind of performance characterization.

2 Derivative Estimation

We assume that the function we wish to measure is f(x). The sensor operation
is modelled as sampling the function at a regularly spaced set of points x,- = iA.
Each measurement is assumed to be corrupted by Gaussian noise nj of variance cr,
so the data obtained from the sensor is f(x{) + n,-. An estimate of /(0) obtained
from noise free data will be denoted /(0) and from noisy data the estimate will be
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denoted fo(0)
In order to estimate f(x) and its derivatives at x — 0 we make a least squares

polynomial fit of order jfc in a neighborhood of x = 0. This is called the facet
model. To specify the size of the neighborhood we introduce a Gaussian weighting
function w(x) = exp {— x2/a2}. We call the parameter a the 'smoothing length'.
The polynomial fit is obtained by minimizing the weighted least mean squares cost
C given by

with respect to the polynomial coefficients ap. The polynomial fit may now be
used to compute an estimate of /(0) or higher derivatives. This kind of least
squares problem is easily solved analytically using orthonomal polynomials [3], [ for
Gaussian weighting use discrete Hermite polynomials]. The process of obtaining
these estimates may be reduced to a simple filter operation where we denote the
filter coefficients by c,, <f, and e,-. For convenience a factor of A is included to
make the filter coefficients dimensionless,

| M ) , /"(0) = £^/(*0 (2)
t

The filters all fall off sharply at about |x| ~ a due to the exponential weight-
ing term. This means that smoothing length a is a measure of the size of the
neighborhood over which we will sample to obtain our estimate.

Both a and A have dimensions of (horizontal) length and we may define a
dimensionless measure of neighborhood size ap — a/A. Note that the coefficients
Ci, d{ and e< depend only on ap. ap is a measure of how many samples to
either side of x = 0 are considered when making the polynomial fit ( w(x{) =

HVj}

3 Error Estimates

The estimate for /(0) in the presence of noise is

[/(*,-) + ",•] (3)

We denote the expected value by (). We define the measurement error crn, as

(4)

The measurement error is not the only reason why our estimate will differ from
the true value. In the absence of noise there is usually a systematic error due
to the fact that values of f(xi) other than /(0) are used in the estimate. For
example if the function is smoothed then peaks will be flattened and troughs filled
in. This degrades the estimate, but is not due to noise, it is a systematic effect of
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the method we choose. We call this systematic error the bias B, and it is given in
terms of the coefficients c,- by

B = /(0) - /(0) = !>/(*,•) -/(0) (5)

Clearly the two sources of error behave differently. More smoothing reduces the
random noise, but increases the bias. If we can estimate the respective errors
caused then we can choose an amount of smoothing that is a good compromise
between the two effects. For this we need an estimate of the bias, which we can
obtain by using a Taylor expansion of the function f(x) to estimate /(0),

/(*) = /(0) + xf'(0) + ^ / " ( 0 ) + ^ / " ' ( 0 ) + • • • (6)

The filter must obviously satisfy ]T^ c,- = 1 and if it is symmetric about i — 0 it will
also satisfy Ĵ ,- ic{ = 0. We cannot in general assume anything about the higher
moments of the filter, although sooner or later some moment, say the nth will be
non-zero, $Z»nc,- ^ 0. Substituting equation (6) into equation (5) and truncating
the Taylor series at n we may approximate the bias by,

(7)

It will be useful to define a quantity Xn which has units of (horizontal) length. It
is defined in terms of the noise variance and the nth derivative,

The Taylor series can now be recast in an illuminating way,

} (9)
What is the significance of x«? For example xi is the horizontal distance that
you must travel such that cr is equal to the change in height of the function due to
the first derivative, i.e. /'(0)xi = o~- For n > 1 \n is a natural extension of that
concept. It is a measure of the distance you must travel before the nth derivative
starts to influence the height by an amount equal to a. It is the significant scale of
horizontal variation for a given problem. We call it the variation length. Normally
the order n is obvious from the context so we will not usually show the subscript
n of Xn explicitly.

As in the case of a it proves useful to consider a dimensionless version of \,
namely \D = x/A. We note that the larger \D is, the better the signal has been
sampled, XD is the ratio of two horizontal lengths, the variation length and the
sampling interval. It is a dimensionless measure of sampling 'quality', and we call
it the sampling ratio.
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The bias can be written in terms of the sampling ratio XD and the noise a as

B~ (10)

It is now time to consider the choice of the parameter ap, the dimensionless
smoothing length or neighborhood size. Intuitively we expect a longer smoothing
length will reduce the measurement error but too much smoothing will smooth
out genuine features and increase the bias B. For typical filters c,- this is indeed
the case. [See figure 1.] These effects both degrade the estimate but are different
in nature. The measurement error is a zero mean random effect, whereas the bias
B is systematic and depends on the shape of the object. These effects may have
different significance to the user. However, in order to proceed we will assume
that the two errors are of equal significance, in other words we wish to minimize
the error as measured by

ffTOT — (ii)

If we define the normalized total error as 7 = <TTOTI°~ then in our approximation
7 is given in terms of the filter coefficients c* by

(12)

We note that 7 depends on only two parameters, namely the sampling ratio XD
and, through the coefficients c,-, the dimensionless smoothing length ao- This
suggests a way of choosing the optimal parameter «o. It must be chosen to
minimize 7 and is a function of XD- We also obtain an estimate of the lowest
possible total error <TTOT = 1°~ for that particular method.

In summary the procedure is as follows. Choose a method and find out the
order n of the lowest non-zero moment of the filter coefficients c,-. Using f(n\0)
and a compute the variation length x- Divide this by the sampling interval A to
get the sampling ratio XD- Then by minimizing the total error 7 with respect to
ao the optimal smoothing length is obtained. An example of this is given in the
results section.

Presumably the user would fix the variation length to its maximum value in
an image. The error at a given position in the image will then always be bounded
by the (lower) measurement error and the (upper) total error for that XD a nd <*D •

3.1 Estimating derivatives
We are not primarily interested in estimates of/(0), our main concern is the first
and second derivatives. The above treatment may easily be extended to these
cases, For the first derivative the measurement error an is given as

(13)
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Figure 1: The zeroth derivative: Measurement (ME), systematic (SE) and total
(TE) errors as a function of smoothing length for \D = 3

The filter coefficients will satisfy ]T\ d,- = 0, Yli J^i = 1 a nd if the filter is antisym-
metric also 53,. i2di = 0. The bias B is defined as B = /'(0) — /'(0) and, assuming
that the lowest non-zero moment is order n, it is approximated by

(14)

The total error <TTOT and normalized total error are

= ( [Am-/•< (15)

(16)

All this generalizes quite straightforwardly to the second derivative, and we list
the results below

2 (17)

— <*-xD
 ( 1 8 )

*2TOT = ( \?M - f"(0)}2) =<r2
n + B2 (19)

(20)
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Figure 2: The zeroth derivative: Minimum total error (MTE), minimum measure-
ment error (MME) and optimal smoothing length (OSL) as a function of sampling
ratio

4 Results

We firstly consider as an example estimating /<,(0) using a second order (k = 2)
weighted facet model. For this case the lowest non-vanishing moment is order
n = 4, so we need the order 4 variation length X4- In figure 1 we show the
normalized measurement error (r^/a2 and the normalized systematic error B2 /a2

as a function of the smoothing length ajj. In this figure we fixed the sampling ratio
XD = 3. For small smoothing length we see that <T2/<X2 —• 1 as would be expected.
As we increase the smoothing length the measurement error decreases. However
as the smoothing length increases beyond about 2 the bias picks up strongly. The
normalized total error 7 has a minimum at about ap = 2 where y2 is a little less
than 0.5. This is how we choose the optimal smoothing length ao- In figure 2
we plot the optimal smoothing length ajj and minimum normalized total error 7
as a function of the variation length XD • The smoothing length is almost exactly
proportional to XD- This is a very useful relation. It suggests that knowledge of
the sampling ratio XD can very much simplify the choice of the optimal smoothing
length «c . The linearity also confirms that the definitions of ao and XD have
been chosen in a physically meaningful way. From the graph we see that to a
good approximation we should always choose ao = 0-$XD- We also see that as
the sampling ratio improves (i.e. XD increases) the total error 7 decreases and we
obtain better estimates. However it doesn't fall off very fast and we don't really
do much better than <JTOT

 =: 7°" ~ 0.5<x for XD ~ 6. In other words we can
reduce the variance of the estimate by about half for moderate sampling ratio and
a sensible choice of smoothing length.

In figure 2 we also show the measurement error (o~n/o~)2 for optimal smoothing
length. It is possible that we may have overestimated the variation length and the



172

1000.0

800.0

600.0

400.0 •

200.0

Figure 3: The second derivative: Measurement (ME), systematic (SE) and total
(TE) errors as a function of smoothing length for \D — 3

bias may be smaller than our approximation. However the total error 7 cannot
fall below the measurement error o~n/a once the choice of smoothing length has
been made.

The next case we consider is obtaining an estimate of the second derivative (the
first derivative follows similarly) f'J(O), again by the second order facet model.
In figure 3 we again show the normalized measurement error /g7ya\a a nd the
normalized systematic error • f ^ as a function of the smoothing length ap for
fixed sampling ratio \D = 3. We note that as the smoothing length ao —*\ 0 we see
that 7" —> 486 as expected since ^ e\ = 6. We also note that the measurement
error is much more sensitive to smoothing than the corresponding quantity in
figure 1. This is not surprising as local differencing operations are much more
sensitive to smoothing. As cto starts to approach XD — 3 the bias grows rapidly,
and the minimum in (j")2 occurs for about ap ~ 2.

In figure 4 we plot the optimal smoothing length ap and minimum normalized
total error 7" as a function of the sampling ratio \D • The smoothing length is
almost exactly proportional to \D, and from the graph we see that to a good
approximation we should always choose OCD ~ 0.6XD-

There is some abrupt behaviour as XD decreases below about 1.4. The optimal
smoothing falls suddenly to zero. This occurs because the bias has begun to

2

dominate even at small ao and, as can be seen in figure 3, /oi^i\i is ve ry flat for
small ato. For small XD , l" shoots up very quickly. (In the figure the dashed line
becomes unreliable here.) What this tells us is that if you wish to get a reasonable
estimate of a second derivative you must sample reasonably finely. If the samples
are too far apart relative to the variation length i.e. if the sampling ratio XD < 1-4
then a meaningful estimate of the second derivative cannot be extracted.

Apart from the region XD < 2, we see that as the sampling quality improves
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Figure 4: The second derivative: Minimum total error (MTE), minimum measure-
ment error (MME) and optimal smoothing length (OSL) as a function of sampling
ratio

j " is roughly constant. Recall that <TTOT — 7'Wx2- What this means is that
for fixed sample interval A, changes in \ o r a affect <TTOT significantly. However
when \ a nd <r are fixed, making A smaller won't improve the estimate very much.
However as soon as the sampling interval A approaches the variation length \ in
size you get a sharp increase in the total error.

In summary: sample too coarsely and you get bad results, but you only get
limited gains by sampling extra finely!

5 Discussion
How useful is our analysis? If the user is unable to estimate the variation length x
then the analysis is of no use. It may indeed be difficult to estimate XA, especially
if one does not have the luxury of knowing the function a priori. However one
should realize that this an important quantity in the experiment.

Consider the case of measuring the zeroth derivative. Before choosing a sam-
pling interval A the user will ascertain the variation length of the sample. Then
A will be chosen to sample this between say 1 and 10 times. In our terminology
this translates to XD ~ 1 — 10. Xi = alf ' s a reasonable way to estimate the
variation length. Of course the precise choice must depend on how the estimate
/(0) will be obtained. The relevant smoothing length may well be X2-

The point is this: In the zeroth derivative case it is considered routine to
have an estimate of the relevant scale of horizontal variation before choosing the
sampling interval. By analogy it would not be unreasonable to require an estimate
of the relevant scale of horizontal variation when measuring higher order quantities.
Obviously these will relate to the rate of change of derivative quantities, and the
required knowledge will be some high derivative.
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a

0.001
0.005
0.01
0.05
0.1
0.2

X4

0.124
0.185
0.220
0.329
0.392
0.466

1st derivative
(TTOT ^ v/X

0.008
0.027
0.045
0.152
0.255
0.429

2nd derivative
<TTOT — 3<r/^

0.195
0.438
0.619
1.386
1.952
2.763

Table 1: The order 4 sampling ratio for various noise values at x = 0.70711

We now apply our technique to a practical problem. In range images of man-
ufactured objects one of the most common surfaces will be cylindrical. Applying
the analysis outlined in this paper we can make a number of purely theoretical
predictions which will be useful when using the facet model to estimate /" .

We consider the problem of recovering a second derivative from a curve of the
form /(#) = \ / l — x2. Clearly the surface has a C1 discontinuity at x = ±1, and
we do not attempt to estimate / " near x = 1.

Because we know the precise analytic form of the function we can test the va-
lidity of the bias approximation [truncating the Taylor series]. We have confirmed
that it is reasonable, and does not affect the optimal smoothing length by more
than about 10%.

In summary if we wish to estimate the first or second derivative over a cylinder
the following rough guide may be useful. This is for the case of the order 2
weighted facet model. Suppose we use x — l/\/2 for our estimate of XA- Table 1
lists values for \4- Then choose some reasonable sampling length, e.g. if XD — 4
then A = x/4. Next read off oto and 7" from figure 4, and then the total error
for the first derivative and second derivatives are given by <TTOT — l'c/x< and
&TOT = 7"°7x2 respectively. If we take the normalized total errors 7' ~ 1, and
7" ~ 3 then an estimate of the total errors for the first and second derivatives is
shown in table 1. Since /'(0.707) = - 1 and f"(x) varies between about —1 and
—3 for |x| < 0.7 most of the values for the total error in the second derivative
are not very pleasing. The difficulty of accurate curvature measurements becomes
plain.
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