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Abstract

The computation of structure and motion from an image sequence
is a fundamental problem in vision. A fully automatic approach re-
quires not only an understanding of geometry, on which a wide range
of work has been carried out in the past, but also the ability to deal
with incorrect data (such as mismatched features) which will inevitably
arise in a real system. It is often assumed that a standard least squares
framework is sufficient to deal with outliers (data that does not agree
with a postulated model). However, outliers can so distort a fitting
process that the final result is arbitrary. We eschew the non-robust
approach as unworkable except for carefully controlled scenes, and we
present a system—consisting of feature detector, feature matcher, esti-
mation of the Fundamental Matrix, and estimation of structure—that
emphasizes robustness to outliers at each stage. The system is fully
automatic, and results are shown for the computation of structure-
from-motion in a cluttered and unknown environment.

Spetsakis and Aloimonos [9] divided research into the problem of structure
from motion into three epochs. The first was spent finding out whether the prob-
lem presented had a solution—is it possible to make three dimensional inferences
from multiple distinct digitized images of an object? Once it was ascertained that
there was indeed a solution, the next period had researchers devising construc-
tive proofs of uniqueness of the solution, involving the minimum number of points
e.g. [5]. Unfortunately initial algorithms were highly sensitive to noise, leading to
an erroneous belief that recovery of structure was essentially an ill-posed prob-
lem and that only ‘qualitative’ solutions were possible. A third period of research
was then directed towards using redundant information in an optimal manner to
minimize the effects of noise; methods have been proposed that use more corre-
spondences [11] and more images [9] than are necessary. The goal of defeating
noise inexorably leads to methodologies that combine many observations, and this
is usually done in a least squares frame work. A major drawback, however, is that
outliers, which are inevitably included in the initial fit, can so distort the fitting
process that the result can be arbitrary. This is especially pertinent when the
true data is degenerate but the solution appears non-degenerate due to a handful
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of rogues. Thus motion research needs to enter a fourth period, the search for
efficient and robust algorithms that will provide as their output, not only the solu-
tion to the problem but a list of data that appears to be in disagreement with this
solution. With this end in the view this paper presents a new Bayesian approach
to outlier detection, defining a cost function and a suitable algorithm to locate
the minimum of this cost function, founded on random sampling. In Section 1 we
describe our robust method for parameter estimation. In Section 2 we show how
the feature matching may be incorporate into the probabilistic framework. Finally
we describe how the feature matching can be improved further by the use of 3D
information, as implemented in the Structure from Motion system in [1].

1 Estimation of the Fundamental Matrix

A completely general model of rigid motion is provided by the Fundamental Ma-
trix. This model does not require knowledge of the camera intrinsic parameters
(focal length, aspect ratio, principal point). The case for algorithms that do not
require calibration has been strongly made in [2]. Suppose that a set of points arise
from an object which has undergone a rotation and non-zero translation. After
the motion, the set of homogeneous image points {x;},7 = 1,...N, is transformed
to the set {x;'} related by

gT[F]ﬁz 0 (1)

where [F] is the 3 x 3 Fundamental Matrix [2]. Given n > 8 we can solve for [F]
by least squares. Unfortunately a few outliers are sufficient to skew the estimated
epipolar geometry. Outliers typically arise from gross errors such as mis-matches
or the occurrence of non-rigid movement inconsistent with the majority. The latter
might be caused by features being on occluding contours, shadows or independently
moving objects.

1.1 Robust Algorithm

In Torr [10] a comprehensive survey of robust estimators is reported, with compar-
isons of the results made on large scale synthetic tests as well as on real imagery.
Methods were evaluated using several criteria: relative efficiency, breakdown point
and computational complexity. The relative efficiency of a regression method is
defined as the ratio between the lowest achievable variance for the estimated pa-
rameters (the Cramer-Rao bound) and the actual variance provided by the given
method. The breakdown point of an estimator is the smallest proportion of outliers
that may force the value of the estimate outside an arbitrary range. For a normal
least squares estimator one outlier is sufficient to arbitrarily alter the result.

We discovered that no one method excels, but that a combination of robust
methods can give a very good estimate of the epipolar geometry, even when the
data is badly contaminated. We have found random sampling techniques, de-
scribed in Section 1.2 give the best protection against outliers, with a high break-
point at the expense of efficiency. Thus random sampling techniques can provide
a good first guess at a solution, but the solution will need improvement and not
all outliers will be detected. In order to overcome this deficiency we then apply a
case deletion diagnostic [10] combined with an iteratively re-weighted least squares
method to further improve the solution. We have found that the the case dele-
tion diagnostic has a lower breakpoint but much greater efficiency. The iterative
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method given above does not enforce the constraint that the determinant of the
Fundamental Matrix must be zero. If the Fundamental Matrix has non-zero deter-
minant then the epipolar lines do not all intersect and one cannot define a unique
epipole. Furthermore Luong and Faugeras [6] have shown that the linear methods
causes a bias of the epipole towards the image centre, and our experimental re-
sults bear this out. In order to overcome this deficiency we need a third stage: a
non-linear minimization, using the parameterization they suggest. We have found
that this tripartite approach gives very satisfactory results, but can yet be further
improved by a conjunction of the estimation process with the matching process,
as will be shown in Section 2. In Section 1.2 we outline the pertinent facts about
random sampling. In Section 1.2.1 we describe the maximum likelihood approach.

1.2 Random Samplin AlEorithms

An early example of a robust algorithm is the random sample consensus paradigm
(RANSAC) [3] another is LMS—the least median of squares estimator [7]. We use
the random sampling techniques to gain a first estimate of the solution and flush
the bulk of outliers. Given that a large proportion of our data may be useless
the approach is the opposite to conventional smoothing techniques. Rather than
using as much data as is possible to obtain an initial solution and then attempting
to identify outliers, we use as small a subset of the data as is feasible to estimate
the parameters (e.g. two point subsets for a line, seven correspondences for a
Fundamental Matrix). We repeat this process enough times to ensure that there
1s a 95% chance that one of the subsets will contain only good data points. The
solution is chosen to be that which minimizes the median squared residual of all
the data, in the case of LMS, or maximizes the number of inliers for RANSAC.
We eschew these heuristics and propose a new probabilistic cost function given in
Equation 1.2.1 and derived in Section 13. In the case of the Fundamental Matrix
we have found that the best error measure to minimize is the distance of each
point to its estimated epipolar line. Henceforth this shall be what we minimize as
our residual.

To estimate the Fundamental Matrix we select seven points and form the data
matrix:
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Examining the null space of this matrix we gain a one parameter family of solu-
tions: a[F], 4+ (1 — «)[F],. Introducing the constraint |[F]| = 0 [2] allows us to
obtain a cubic in « from which we obtain 1 or 3 solutions—all of which we try to
see which gives the best result.

We now calculate how many subsamples we require [3, 7] propose slightly
different means of calculation but the number of samples is roughly the same
and here the method of calculation given in [7] is used. Ideally we would like to
consider every possible subsample, but this is usually computationally infeasible,
thus we wish to choose m, the number of samples, sufficiently high to give a
probability in excess of say 95% that we have included a good subsample within
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our selection. The expression for this probability Y is
T=1-(1-(1—ep)" (3)

where ¢ is the fraction of contaminated data. p is the number of points needed to
make an estimate, in this case 7. Table 1 gives some sample values of the number
m of subsamples required to ensure T > 0.95 for given p and ¢. It can be seen

Dimension Fraction of Contaminated Data
p 5% 10% 20% 25% 30% 40% 50%
i 3 5 13 21 35 106 382

Figure 1: The number m of subsamples required to ensure T > 0.95 for given p
and €, where Y is the probability that all the data poinis we have selecied in one
of our subsamples are non-outliers.

from this that far from be computationally prohibitive, the robust algorithm may
require less repetitions than there are outliers, as it is not directly linked to the
number of outliers only the proportion of outliers. If the fraction of data that is
contaminated is unknown, as it is usual, an educated worst case estimate of the
level of contamination must be made in order to determine the number of samples
to be taken. We can reduce the number of samples needed as we proceed, by
storing maximum percentage of inliers so far found, e.g. if one sample has 80%
inliers we know that we have at most 20% contamination and need only take 13
samples, according to Figure 1.

To reduce the chance of selecting degenerate configurations we use spatial and
velocity information, essaying the selection of correspondences widely separated
spatially and in velocity. As points are selected at random for the sub-sample
we create a probability that they might be rejected if they lie too close to points
already selected within the sample.

1.2.1 A Maximum likelihood approach to random sampling
The disadvantages of RANSAC and LMS is that the cost criteria that they mini-

mize are based upon heuristics. We propose a well principled maximum likelihood
approach to mis-match detection. Consider a set of observed motion data, con-
sisting of temporal matches of image features between two frames. We intend
to find the most probable underlying interpretation © given the motion data D,
according to the model we define, using the method of maximum likelihood. In
this case an interpretation will divide the data into a set of outliers, k, and a set
of inliers, k;, and provide a parameter estimate associated with the inliers. The
most likely partition is obtained by maximising the joint likelihood function of all
measurements over all possible partitions:

max Pr[@|D] . (4)

Now the conditional probability may be rewritten using Bayes’ theorem,

Pr[D|©] Pr[O]

Pr{o|D] = =5 ; (5)
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and, as the prior Pr[D] does not depend on ©, this is further simplified to finding
max Pr[D|©] Pr[© (6)

The likelihood function is composed of two components
Pr[D|©] = Pr[;|©] Pr[k,|©] , (7)

where Pr[x;|©] is the probability density function of the set of inliers, and is
composed of two parts: one due to its deviation from its epipolar line, one due to
the deviation in intensity between the two corners of the match. We shall assume
that the variance in this distance to epipolar is Gaussian:

A L (8)

f_a

where o is the standard deviation, which can be estimated from the median as
will be described. The probability density function of the cluster is,

Pr(x;|©] = H w,

1EK;

e# ; (9)

the first term originates from our Gaussian assumption: d; is the distance from
epipolar line and ¢ its standard deviation. The second is the output of our corner
matcher, giving the probability that two corners are the same from their intensities.
If required we could assume a more exotic distribution for d; but in many cases
we find Gaussian assumptions suffice.

We shall assume that the distribution of distances of outliers from their esti-
mated epipolar lines follows a uniform distribution: %, giving:

Pr[k,|©] = (%)“ ]e'[ w; (10)

where n, is the number of mis-matches. Thus the total likelihood function for a
given partition is:

Pr[D|O] = (%)n 11 (w,-

1EK;

_d?

€7 ) II = (11)
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If we have some knowledge about the rate of appearance of mis-matches we can
make an educated guess to our prior Pr[@]. Let this rate be u we can assume a
Poisson process for the appearance of mis-matches:

e"punn

Pr[O] = (12)

n,!

Empirically we found that inclusion of the prior term gave around a 10% improve-
ment in the standard deviation of the epipolar distance (distance of the projection
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of a point to its epipolar line). Taking logarithms of the likelihood function we
have the following expression for minimization:

2
~nPrfo|D] = 3" %’3-1-119 In (E) +In(no!)+n; In (\/2_7ra')+ Y witn (13)

iEK; 1ER UK,

where the weights w; = Inw; are the likelihood of the matches given in Equa-
tion 19, and n; is the number of inliers. We choose the random sample that min-
imizes this cost function and refer to this method as MLS—maximum likelihood
sampling.

1.3 Standard Deviation and removal of outliers
Robust techniques to eliminate outliers are all founded upon some knowledge of

the variance of the error in feature location. This variance is related to the char-
acteristics of the image, feature detector and matcher and is not always available.
If it is not, and the outliers are in the minority, a first estimate of the variance can
be derived from the median squared error of the chosen parameter fit [7]:

5
=1.4826 1 \/med;d? 14
7 ( * n—p) Bk (19

the factor 1.4826 = 1/®1(0.75) was introduced because med;|d;|/®~1(0.75) is
a consistent estimator of ¢ when the d; are distributed like N(0,0?). However
empirically it has been shown that the factor 1.4826 is not enough when n =~

2p and that a correction factor of (1+ nETp) is needed to give a satisfactory

solution. Given a solution, we must decide whether each match belongs to the
inlier or outlier population, based upon its estimated distance from the epipolar
line. Equation (13) defines the decision process, a point being allocated such
that the contribution to this cost function is minimized. If a point is inlying its

contribution is: )

pg:ln( 2«0) +% : (15)

Determination of the contribution of each outlier is more difficult as we need to
know the number of outliers, n,. So we shall consider what would be the addition
to the cost function is a point that was considered an inlier is changed to an outlier,
this is:
v
pO = ln (;) + ln(no + ]-) —Pi , (16)

some rearrangement leads us to the decision rule that we should consider a point

as outlying if:
& > 20%In (”(7"—2:—3) ‘ (a7

In order to apply this decision rule we consider matches in order of increasing d?,
assuming all the matches are inliers at first n, = 0 and converting matches to
outliers if they fulfill Equation 17, until there can be no more outliers. Thus we
have established an adaptive threshold for our model considering the probability
density functions of both the inlier and outlier sets.
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We have rigorously tested the various methods presented on real and synthetic
data. We ran the experiment randomly generating synthetic data in three space.
The data was perturbed by Gaussian noise, standard deviation 1.0, and then
quantized to the nearest pixel. We then introduced mismatched features to make
a given percentage of the total, in this case 200 features, between 10 and 50 percent,
(in increments of 5 percent). Each experiment was repeated 100 times to generate
the graphs shown in Figure 2 comparing several categories of robust estimator. We
measure the standard deviation of the distance of the actual noise free projections
of the synthetic world points to their epipolar lines for several estimators. It can
be seen that the ordinary least squares method (LS) is totally non-robust, giving a
standard deviation of 4.7 when only 5% are introduced. The Huber M-estimator [4]
rapidly breaks down after 35% outliers, but only provides inaccurate results below
that. The case deletion [8] methods provide a more graceful degradation. The
LMS methods provides good result but the synthesis of MLS and the case deletion
diagnostic proves to be the best estimator.

Standard Deviation
20 LS Huber
27 - :
G ; _W /Casa
: /
21 ! — Y
18 /T
7"
15 5 S o
s
12- —_—
9.
6 JE— I "
i e _MLS
34 i -
" P R e S :
0 5 10 15 20 25 30 35 40 45 50
Percentage of outliers

Figure 2: Showing the standard deviation of the projections of the noise free points,
to the estimated epipolar lines, over 100 tests on 200 points.

2 Improvement of Matching

In the course of the matching process we are often presented with several candidate
matches for each feature. Initially we select the one that is most similar in image
intensities. The strength of match between is obtained by cross-correlation of
image intensity over a 7x7 pixel patch:

C= Y (I,j) - hi,j))’ (18)
ijepatch

where I,(i,j) is the image intensity at coordinate (1,7) in the nth image. We
shall assume a Gaussian distribution for the variation in image intensities, thus
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the probability of a match having arisen given image intensities is:

1 —(rzgi.jg-zf,gi.m’
w = e b 19
H V2mar (19)

ijepatch

where o7 is the standard deviation of the image intensities. As the match may be
incorrect, it is desirable that, if in the course of the estimation process we discover
that the feature is mismatched, we are able to alter this match. In order to achieve
this we store for each feature not only its match, but all its candidate matches
that have a similarity score over a user defined threshold. After each estimation
of the epipolar geometry, in the iterative processes described above, points that
are flagged as outliers are re-matched to their most likely candidate.
Feature matching proceeds as follows;

e Stage 1: for a corner x; in image 1, the search area for its match x3 in image
2 is defined by the constraint that ||xs — x1|| < dmaz, Where dpar is the
maximum disparity of a point between image 1 and image 2.

e Stage 2: the Fundamental Matrix [F] is computed from the stage 1 matches,
the matches are reassigned to minimize the term given in Equation 15. From
these improved matches we can allow the computation of [F] to proceed for
some further iterations thus effecting a conjunction of the matching and
robust estimation processes.

e The third stage involves the use of structure once the system has created a
map of the world and is described in more detail below.

2.1 Matching supported by 3D structure

The use of robust techniques in a Structure From Motion system which provides the
basis for navigation of a robot arm is described in [1]. Robust methods have been
found to significantly improve performance since even a few mismatches at each
stage can have a large cumulative effect on recovered 3D structure over the course
of an image sequence. Correspondence matching in the system is a three-stage
process, the key idea being to successively reduce the search area for matching at
each stage. In the first stage, the search area is constrained only by a threshold on
the maximum disparity of a point between a pair of images. In the second stage,
the Fundamental Matrix is computed from the stage 1 matches, and the search area
for an unmatched corner’s match is then constrained to lie on an epipolar line. The
approach so far is similar in overview to that described previously, but there are
differences - in particular, the only robust technique employed in the computation
of [F] is iteratively reweighted least squares. This has proved sufficient since the
only source of outliers is from mismatches (there is no non-rigid motion of the
scene) and the number of outliers is typically below 10-15% in the indoor settings
used for the work.

There follows a third stage of matching which utilises the ongoing estimate of
the 3D structure of the scene computed by the system. The matches obtained
in the first and second stages provide a correspondence between the 3D structure
and the latest image. These correspondences are used to compute the perspective



Figure 3: Football matches.

projection matrix [P] which describes the projection of the 3D structure X to the
corners x in the latest image:
X = [P]X (20)

where x = (z,y,1)7, X = (X,Y,Z,1)7 are homogeneous vectors, and [P] is a
3 x 4 matrix. Each correspondence x «— X provides two linearly independent
equations in [P], so six correspondences are sufficient to uniquely determine [P).
The computation utilises both the random sampling algorithm and iteratively
reweighted least-squares. Once [P] is known, matching can be resumed for any
unmatched corner x which has an associated 3D point X, with a search area
defined by the projected position [P]X and the projected uncertainty ellipsoid for
X.
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3 Conclusions

We have presented a thoroughly robust system that integrates the estimation
of epipolar geometry, structure and matching under the common framework of
maximum likelihood estimation. We have shown that a combination of robust
methods allows us to attain the twin goals of efficiency and high breakpoint, and
that negligence with regard to outliers will give a result of significantly inferior
quality. Although the problem addressed in this paper has been a specific one the
methodologies are completely general and can be extended to most types of robust
estimation.
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