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Abstract

This paper presents a quantitative analysis of the error of the edge
angle measurement obtained from edge detector in the presence of grey
level gaussian noise. Our analysis shows that the uncertainty of the
angle measurement is only related to the grey level noise power and
the gradient of the edge point at which the angle is measured. Both
image independent upper bound and image dependent estimate of the
noise variance of the angle measurement are given.

With this result, we argue that one can provide better angle and
curvature estimates by filtering the measurements adaptively according
to the local uncertainty without having to compromise detail sensitivity
and noise robustness. As an example of application, a new method of
detecting curvature features is derived. The experimental results show
that this algorithm works well, and in particular it can handle some
difficult situations where other methods may fail.

1 Introduction

CJontour curvature features are one of the most important information that can
be used for object recognition from shape. The points of maximum convexity,
concavity and inflexion partition the image curves into relative stable segments
which then can be matched against each other. Sometime these points are also
called critical or salient points. In classic mathematics, curvature is defined as the
rate of the angle change along the arc length. Although some researchers argue
that saliency in digitised image can be best captured by other means [5], curvature
remains to be a generic, concept of saliency on curves. The major challenge of
curvature based approach is then how to extract the curvature feature points in
the presence of noise accurately.

Generally there are two classes of approaches to the problem of restoring curva-
ture information from digitised noisy image. An extensive comparison of curvature
estimation methods has been reported by Worring [18].

The first class of methods is called orientation based. Accordingly, curva-
ture estimates are obtained from angle information. Within this class of methods,
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there are two approaches. In the first approach, the angle information is obtained
from a set of discrete edge pixel positions (e.g. [ 1 ],[ 14]). The other uses angles
estimated from other sources such as the gradient information (e.g.[4] [2]). Ob-
viously, if there is no gradient information available, e.g. in estimating curvature
from binary images which is common in the literature on character recognition,
we are constrained to use the first approach. A good comparative study of the
methods that extract curvature from binary images can be found in [8].

The second class of methods named as path based do not estimate angles
beforehand. Instead curvature is computed indirectly from a parametric approx-
imation of the curve. The parametric model of the curve can be either global
or local. The global curve fitting approach includes a number of spline fitting
algorithms [12] [10] as well as the "snake" [7], and has the drawback of requiring
an assumption of the form of the underlying contour [16]. Also the problem of
optimal piecewise curve fitting often leads to a minimisation process that is so
expensive that one has to settle for suboptimal or heuristic procedures. This is
exemplified by the problem of optimal knot insertion in spline approximation of
contours. The alternative is to use dynamic local models and treat the evolution of
the local models as a filtering process [9] [11] [16]. In particular Sander's Kalman
filtering method gives a good performance in terms of accuracy [16]. However
such methods require an initial estimate of the appropriate scale of filtering which
without knowing some statistical characteristics of the signal and the noise is quite
difficult to give (see [16], the example of calculating the curvature of a logarithmic
spiral). In general, path based methods perform poorly, with large bias on the
angle and curvature estimation [18].

In this paper, we will present a new method of detecting curvature features.
Our approach is orientation based since we will use the angle information cal-
culated directly from the grey level gradient. Our method is different from the
previous approaches in that we begin with a quantitative analysis of the noise
present in the angle measurement, and then use the result of this analysis to guide
the filtering and detection process. Our filter is adaptive because it can adjust
itself according to the local noise condition. We derive our curvature feature de-
tector using the optimal filter design advocated by Petrou as it guarantees optimal
performance in terms of the objective criteria given by Spacek. Experimental re-
sults show that our curvature feature detection algorithm outperforms Gaussian
smoothing method, and has the unique ability to adjust automatically according
to the local SNR.

In section 2, we will describe some basic concepts and introduce the assump-
tions made about the noise in the signal. Section 3 presents a derivation of the
power and the mean of noise on the angle calculated from the gradient information.
Section 4 describes an adaptive filtering algorithm that uses results of Section 3.
Section 5 shows the experimental results and Section 6 draws some conclusions.

2 Preliminaries

Image restoration is concerned with the process of recovering measurement of
the objects from noisy and imperfect image data. Image data acquired from a
sensing-recording system usually suffers from both image dependent and image
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independent noise. Our ability of recovering original signal from noisy data de-
pends on the extent of our knowledge about the degradation process [6, Chapter 8,
pp.267]. In this paper we specifically deal with the problem of recovering angle and
curvature measurement from grey level images corrupted by image independent
noise.

Most of edge detection processes involve thresholding of the gradient image.
Edge pixels are characterised by local maxima of gradient magnitude values. Given
an intensity image f(x,y), the gradient image g(x,y) is defined as

g(x,y) = |V/| = ^jg2
x+gl, where gx = — ,gy = — (1)

Given that point (x,y) is an edge pixel, its direction is define as :

9(gx,gy)=arctan(9-^) (2)

In practice, gx and gy are calculated by gradient masks. Here we are particularly
interested in the class of separable masks since they introduce no correlations
between the noise on gx and gy. The simplest type of separable filter has a ID
form :

H x = [h°x ••• 0 ••• h » ], Hy = [h°y ••• 0 ••• h f ]T ( 3 )

Note that if the noise at all the points of image f(x,y) is an Independently and
Identically Distributed (IID) gaussian random variable, then the errors on the
gradient estimates given by the x,y masks are also gaussian. Thus we can assume
the outputs of the gradient masks at a pixel (x, y) to be

9x — 9x0 ~t~ i]xi 9y — 9yO i i)y y?)

where gxo and gyo are the true gradients and i)x and i)y are IID gaussian variables.

3 Error in the Angle Measurement

3.1 Analysis of the error in calculating angles

As Equation 2 suggests, the angle measurement can be treated as a two dimen-
sional function of x, y gradients. This functions is discontinuous at <7y-axis (where
gx = 0) where arctan{) jumps from —TT/2 to +TT/2. Figure 3.1 shows the shape of
arctanQ function.

Notice that, although the surface of 0(gx, gy) is discontinuous, it is continuously
differentiable at (—oo,0) and (0,+oo). Moreover,

Urn - — = Urn —— = (5)
S l —o- ogx g*^o+ ogx gy

So generally when we exclude the origin (gx — 0, gy — 0), partial derivatives ^p-
and -Q— always exist and are finite. Hence we can apply Taylor expansion to
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Figure 1: Surface O(gx,gy) =

Equation 2 by substituting Equation 4 :

80 36
+

(6)

where gx\ and gy\ are bounded by gx0, gxo + 7]x and gy0, gyo + r]y. Define the error
of angular measurement i) to be the 1st and 2nd order remainders:

V(9xO,9yo) = (-Q^^ + ^ -

Differentiating Equation 2 and knowing that i)x and i]y are IID gaussian variables,
we can derive the mean and variance of the error of the angular measurement :

= 0

9\

(8)

(9)

where </i = <Jgxi + gy\- Given that gx\ and gy\ are bounded within ranges

(9x0,9x0 + Vx) and (gyo,9yo + Vy)> anc^ ^ i s small (typically less than 1/20 for

normal edge thresholding criteria), the variance of the error can be approximated
by substituting -^ « -^:

~ t a \2 £( ff \A

go go

Equation 8 and Equation 10 have several implications:

(10)
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1. Equation 8 shows that 0(x,y) is an unbiased estimate of the angle at edge
point (x,y) if the error on x,y gradient measurements are uncorrelated.

2. The mean square error (which somehow represents the uncertainty) of the
angle measurement is only related to the signal to noise ratio of gradient
measurement (which represents the "strength" of the edge). Given the esti-
mate of the noise power in an image, we should be able to tell quantitatively
about the uncertainty of our angle measurement at arbitrary point.

3. By utilising the uncertainty information, we can produce various kinds of
adaptive filtering techniques to "restore" the angle signal from noisy data
with generally higher accuracy than fixed scale filtering techniques. An ex-
ample of combining optimal feature detector with this uncertainty informa-
tion is given in the next section.

4 Extracting Curvature Features

4.1 Our approach to the problem

We aim to extract curvature from grey level images along contours defined by
edge chains where gradient information is assumed to be available. We adopt
the approach of filtering of edge angle measurement obtained from the gradient
information as it offers the following advantages:

1. Angles estimated from edge pixel positions are more prone to error than those
obtained directly from gradients. This is because the process of locating edge
pixels often involves non-maxima suppression, thresholding, and ultimately
a discretisation process. Furthermore, parametric models of the curves have
to be fitted to the edge pixels to calculate the angles and this introduces
additional approximation error. In Worring's paper [18], it has been shown
that Duncan's method [4], which bases angle estimates on gradient with
equidistant resampling is superior in performance to most of the path based
methods.

2. In path based methods, nonlinear processes such as thresholding and dis-
cretisation of edge pixel positions make it difficult to relate the error of the
estimated angle to grey level noise. Hence it is difficult to obtain the ap-
propriate scale of smoothing to be applied to the raw data. In contrast as
angles estimated from gradient information are not affected by any threshold-
ing and discretisation process, it should be easier to analyse the propagation
of the noise from grey level image to the angle estimate and study its effect
analytically.

Asada and Brady [2] used a gaussian filter to smooth the orientation data to
compute the curvature. Our method is similar to their approach but with two
major differences:

1. Instead of using a gaussian filter, we use the criteria proposed by Spacek and
the result from Petrou to obtain the optimal shape of the filter. This filter is
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optimised for good detection, localisation and suppression of false responses
in detecting ramp shaped angle changes. An optimal filter for detecting
inflexion points can be derived using the same procedure where the profile
of angles at the inflexion point can be modelled by a gaussian function.

2. In section 3, we have shown how to estimate the noise of the angle measure-
ment. The filter size w in our method is calculated according to the local
estimate of the noise, i.e. it can adjust itself adaptively.

4.2 The optimal filter for ramp angle changes

A curvature extremum is characterised by an abrupt angle change. Here we model
the profile of this angle change with a ramp function:

l - e " ! r / 2 x>0

x < 0
(11)

In principle the detection of curvature extrema follows the same rule that guides
the design of edge detector (which is essentially the detection of gradient extrema
in 2D space). Canny formulated three separate criteria for good extrema detection
for ID signal g(x), namely the good detection criterion (maximum SNR):

s=
-W \f(*)\2dx

localisation criterion :

and suppression of false response:

s-i _

Spacek combined criteria 12-14 into a single criterion function P

P=
-esx)dx f°

' J-
« ,

fljf(*)\2d* fljf"(*)\2dx

(15)

and applied to it to the problem of detecting a step signal. Petrou [13] extended
his work to ramp signals of the form given in Equation 11 to find the following
filter:

f{x) = cAx[Lxsin{Ax) + L2cos{Ax)}
+ erAx[L3sin{Ax) + L4cos(Ax)} + L5x + L6e

sx + L7 (16)

where L\ • • • L7 have been optimised numerically for different filter size w [13]. This
is the generic form of the filter we have adopted for detecting curvature extrema
in our work.
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4.3 Dynamic determination of the filter size w

Many researchers have noted the problem of choosing an optimal filter size w to
simultaneously maximise both SNR and localisation criteria (Equation 12 and 13)
[3] [13]. A large filter size normally gives a better signal to noise ratio, small
filter size can improve the accuracy on locating the peak. In the problem of edge
detection, Canny argued that since the signal-to-noise ratio of each edge is likely
to be different in an image, the size of the operator must be changed dynamically
by the algorithm and this requires a local estimate of the noise energy in the
region surrounding the candidate edge[3]. Similarly, in the problem of detecting
curvature extrema we have shown that the noise power of the angle measurement
is a point-dependent function (Equation 10), hence we should make our filter size
adjustable according to the local angular noise estimate given by Equation 10.

It is reasonable to assume that in many images the strength of edge is likely
to be constant along a curve for some length, and thus within a certain region
of support the angular noise is stationary. So for each edge segment where edge
pixels have similar gradient, we may begin searching for a filter size w by assum-
ing E(i]2) = E{if). E(r)2) is the average of m.s. angular errors estimated by
Equation 10.

When E(i]2) is given, in principle we can solve Equation 12 for the value of
w so that the detection criterion S (which is the signal-to-noise ratio) equals a
given constant. By fixing the value of 5, the value of objective function L and C
are also fixed, and we have a constrained optimality where for a given demand of
signal-to-noise ratio, we obtain a locally optimal curvature feature detector. On
the other hand, one may want to find an appropriate w from Equation 13 to satisfy
a specification of localisation. In either case, the w found might not be a global
optimum. Note that if we attempt to optimise Equation 15 for w directly, we will
find that the larger w is the greater P is. This is because the larger the filter the
more the edge "looks" to the filter like an ideal step edge [13].Obviously, a large
smoothing kernel is not always desirable, as it may perform poorly in terms of
localisation and also cause feature interference.

In practice, both detection and localisation criteria (Equation 12 and Equa-
tion 13) when treated as functions of w are generally monotonic. We can therefore
solve either one of the two equations for w using logarithmic search. As the number
of permissible values of w is rather limited, this search can be quite fast (normally
less than 10 iterations to converge).

Now we summaries our curvature feature detection algorithm:

1. Perform separable optimal filtering based edge detection. Record angle and
gradient information and the estimate of grey level noise.

2. Split edge strings into segments so that in each segment the sum of the
variance of the gradient is less than or equal to a given constant G. Within
each segment, the filter size will be constant.

3. For each segment,

• Perform logarithmic search for the optimal filter size w which satisfies
either a given value of S in Equation 12 or of L in Equation 13
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(a) The two segments 1 and 2 of the
edge of the inner arch have differ-
ent error variance when the strength
changes

(b) Different edges of a box have dif-
ferent errors of angle estimate due to
different strength: edge 1 and edge
2 (and similarly edge 3 and 4) have
same angle but different error vari-

(c) Corners of the box in (b) detected
by the fixed width filter (w = 6)

(d) Corner of the box in (b) detected
by the adaptive curvature feature de-
tector

Figure 2: Change of edge strength causes change of error variance : locations on
the edges where a false maxima are likely to be detected by the fixed size filter are
shown in the enlarged boxes.



123

• Select filter weights from filter table, and generate filter mask. Convolve
the mask with angle data.

• Differentiate the filter output and threshold to get curvature extrema.

4. Perform extrema selection by ranking and non-maxima suppression.

5 Experimental Results

Figures 2(a) and 2(b) show two test images. Note that in Figure 2(a), the
marked edge becomes more noisy when the gradient changes from segment 1 to
segment 2. This justifies our error analysis results (Equation 8, Equation 10.)
From Equation 12 we know that as the edge becomes more noisy, larger filter
kernel is required to maintain the desired SNR criterion at output of the filter.
Figure 2(c) demonstrates the corners detected by a fixed size smoothing kernel.
We can see that due to the change in the angular SNR, two false maxima were
detected. By contrast in Figure 2(d), these false maxima are suppressed by our
adaptive filter as the kernel size increased automatically when the noisy edges were
encountered.

6 Remarks and Conclusion

In this paper we have presented an analysis of the error of angle information
provided by the edge detector. We showed that if the errors in x, y gradient are
uncorrelated, the error of the angle measurement at any edge point is only related
to the local SNR of the gradient 10. However, we are not entirely constrained to
the class separable edge detectors. For an arbitrary edge detection mask, we are
able to tell quantitatively the amount of correlation introduced in the x, y gradient.
By similar analysis, using the means, variances of the gradient components and
the correlation between them, we can derive formulae for mean and variance of
the error of the angle measurement. In this case, the mean can be non-zero for
asymmetric masks, which means a noise cancelling is required before applying the
filter.

The optimal filter formula 16 is a one dimensional application of the edge
detection theory proposed by Canny and Spacek and extended by Petrou. In fact,
the problems of edge detection and curvature feature detection from angle data
are subject to the same principles and measure of quality which can be viewed as
a general theory of feature detection.
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