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Abstract

In this paper we propose a novel, efficient and geometrically intuitive
method to compute the four components of an affine transformation
from the change in simple statistics of images of texture. In particular,
we show how the changes in second circular moments of edge orienta-
tion are directly related to the rotation (curl), scale (divergence) and
deformation components of an affine transformation, and how these
components can be computed from multi-scale texture moments. A
simple implementation is described which does not require point, edge
or contour correspondences to be established. It is tested on repetitive
and non-repetitive visual textures which are neither isotropic nor ho-
mogeneous. The theoretical accuracy and the noise sensitivity of this
method are compared with other linear moment and circular moment
methods.

1 Introduction

The estimation of an affine transformation is often an integral part in structure
from motion (or stereo) and shape from texture. In structure from motion, rela-
tive motion between the viewer and scene induces distortion in image. In small
neighbourhoods, this distortion can be described by an image translation and a
four parameter affine transformation [7]. In shape from texture, the distortion in
an image of a surface with a repeated texture pattern can also be modelled by
affine transformations [4, 9].

Many methods have been proposed to extract the affine transformations. The
simplest method is based on the accurate extraction of points or lines and their
correspondences. This requirement of correspondences becomes a non-trivial prob-
lem in densely textured images. Cipolla and Blake [3] presented a novel method
to recover the affine transformation from image contours. Although this method
did not require point or line correspondences, the extraction and tracking of closed
contours is also not always possible in richly textured images.

A large number of techniques have been developed which do not require the
explicit correspondence of features. For small visual motions or distortions, a
common method is to estimate the affine transform from spatiotemporal gradi-

ents of image intensity [1]. The amount of visual motion allowed is limited by
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the smoothing scale factor. For estimating the texture distortion map, Malik and
Rosenholtz [9] have attempted to solve for the affine transformation in the Fourier
domain although this involves the choice of a suitable window and is limited to
repetitive textures. Under the assumptions of directional isotropy [i1] it is possi-
ble to estimate the surface orientation from the second moment matrix of image
element orientations [2, 5]. Modifications of the second moment matrix which also
exploit image intensity gradients have also been used [8]. However, it is impos-
sible to recover the affine transformation (four independent parameters) uniquely
from the second moment matrix, although all four parameters of the affine trans-
formation are required for an arbitrary stereo configuration or in structure from
motion.

Recently, a novel method [10] was proposed to compute all four parameters
of the affine transformation from simple linear moments. Although this method
succeeds in deriving the affine transformation of texture images which are neither
isotropic nor homogeneous, it suffers from the aliasing problem, that is distribution
of orientation is not continuous at 0 and w radians, and the theory breaks down
at these points. Although this problem can be avoided by using circular moments,
second circular moments are not sufficient to compute all the four parameters
of affine transformation. One solution is to use higher moments but these are
sensitive to noise.

In this paper we propose a novel, efficient and geometrically intuitive method
to compute the four components of an affine transformation only from the change
in second circular moments of the images of texture using multi-scale-space repre-
sentations. This method does not require any correspondence of the image feature
to be established, and does not suffer from the aliasing problem. The theoretical
accuracy and noise sensitivity of this method are compared with other linear and
circular moment methods. A simple implementation is described, and is tested
on repetitive and non-repetitive visual textures which are neither isotropic nor
homogeneous.

2 Theoretical Framework

In this section, we formalize the method of computing the parameters of an affine
transformation from the moments of multi-scale representation. To do this, we
first show that the affine transformation can be computed using differential in-
variants of the image velocity field. Next, we describe how the change in orienta-
tion of the image detail is related to the parameters of an affine transformation.
This observation is then used to derive the relationship between these parameters
and the moments of the orientation of image detail. Unfortunately, this relation-
ship provides only two equations, but there are four unknown parameters of the
affine transformation. To compute the affine parameters uniquely we combine this
relationship with multi-scale-space representation, and formalize the method to
compute all four parameters of an affine transformation from the moments of the
orientation of image detail in closed form.
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2.1 Differential Invariants of the Image Velocity Field

Generally, an affine transformation, A, which represents the image distortion, can
be described by the 2x2 identity matrix, I, and a 2x2 differential component, @,
as follows:

A= I+Q (1)

If the image distortion is small, the differential component, @, of the affine trans-
formation which describes the image distortion can be approximated by the first
order partial derivatives of the image velocity field or disparity field. Then, the
matrix @ can be described using the first order differential invariants of the image
velocity field, i.e. curl, divergence and deformation [3]:

0 divi [1 0 curlv [0 -1 defv [cos2u  sin2pu
-2 |01 2 |1 0 2 |sin2u —cos2u

(2)

where p is the orientation of the axis of maximum expansion. curlv, divv and
defv are the curl, divergence and deformation components of the image velocity
field, v = [u, v], and are defined by:

divv = u; + vy defv cos 2u = uy — vy
curlV = —uy + v, defVsin 2p = uy + v,

where, u,, uy,, v; and vy are the first order partial derivatives of the image velocity
field, V.

2.2 Changes in Image Orientation and the Affine
Transformation

We now investigate the effect of these first order differential invariants on the

orientation of image detail.

Consider an element of texture represented by an unit vector, v, with orien-
tation, . The affine transformation, A, transforms the vector, v, into v/ with
orientation ¢’. Therefore, the z and y component of the transformed vector, v/,
is described as follows:

[L’(SO) cos w’] - A

L'() sin ¢’
1+s+d; dy—c cos (3)
dy+e 14+s—d;| |sing

where L'(¢) is the length of v/ (note that the length of the transformed vector
depends on the original orientation, ¢, and is no longer a unit vector), and for
simplification we changed the expression of the differential invariants as follows:

s = 1divv dy = 3defV cos 2p
o= %curl\?‘ dy = %defﬁsin 2p

We now compute cos 2y’ and sin 2¢’, because we will use second circular moments
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in the next stage. (Note that first circular moments are always zero, because we
reflect each orientation, ¢, of the image detail to ¢ + = before computing the mo-
ments to avoid an aliasing problem.) From (3), cos 2¢’ and sin 2¢’ are computed

by:

cos2p’' = cos® ' —sin?y’
1 ;
— W(k11c05290+k1251n250+k13) (4)
sin2¢’ = 2sin¢g cosy’
= ﬁ (k21 5in 2 + kg cos 2¢0 + ka3) (5)
where:
k|121+d%—d%+32+25—(}2 kglzl—d?+d%+52+25—c2
k12 = Q(dldg —“C—CS) kgz = 2(d1d2+c+ (.’S)
k13:2(d1+d18—d26) k23=2(d2+dgs+dlc)

If the image distortion is small, that is s < 1, ¢ « 1,d; € 1 and dy < 1,
the second order products of these differential invariants can be neglected. Then,
(4) and (5) are approximated to first order by:

cos2p' ~ 11(]7)2 (cos 2 + 25 cos 2¢p — 2¢sin 2¢ + 2d4) (6)
1
- 'i‘ i . .
sin2p’ ~ L (sin 2 + 2ssin 2¢ + 2¢ cos 2¢ + 2da) (7)

2.3 Texture Moments under Affine Transformation

In this section, we formalize the relationship between the circular moments of the
orientation of the texture and the four components of the affine transformation.
This allows us to compute an affine transformation without any correspondence
of spatial image features. In previous work on shape from texture, the texture
was often assumed either to be spatially homogeneous or isotropic in orientation,
though such textures are limited in the real world. Here, we consider any visual
pattern in the real world as a texture, and consider the change in the statistics of
the visual texture under an affine transformation.

Consider the texture to have oriented elements with distribution, f(p), which
will be changed to f'(¢’) by an affine transformation. The unit texture elements
whose orientations lie in the small interval (p, ¢ + dy) move to the small interval
(¢', ¢’ +d¢') by the affine transformation, and the length of each element changes
to L'(¢). Then, the number of unit elements, g(¢') which lie in the interval (¢’,
@' + dy') is described as follows:

9(¢)de’ = L'(p)f(p)de
Because f’(¢’) and f(y) are defined per unit area, the transformed distribution
f'(¢') is described as follows:
T
e’ = =a(e)de’
T
= wli(e)f(p)dp (8)
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where 7" and T" are the total length of the texture elements in the original and

distorted area. Second circular moments of the distorted texture, Igno,s and
Ieos 24 can therefore be described as follows by definition and (8):

2 ) T 2w )
Linzpt = /0 sin2¢'f'(¢')d¢’ = = /0 sin 20’ L' () f(p)dy (9)

2m T 2n
lswgp = f cos 2¢' f'(¢')dy' = = cos2¢'L'(p)f(p)de  (10)
0 0
Substituting (6) and (7) into (9) and (10):
E ™. : 1

Lawn = 7, (sin 2¢p + 2ssin 2¢ + 2ccos 2¢ + 2d5) mf(ya)dcp (11)
e = o | oy oveoa - 95un 0P — Pl 2]
cos 2! = T ; COS 2 5CO8 2 C81n 4@ 1 L"(So) w)ap

Because L'(p) ~ 1 under small image distortion, 1/L'(¢) of (11) and (12) can be
approximated to first order by:

1 ,
T - 1—(L'(p) - 1) (13)

where L'(¢) is computed from (3) by:
L'(¢) ~1+dycos2¢ +dysin2¢ + s (14)

Substituting (13) and (14) into (11) and (12), and approximating to first order by
neglecting the second order products of the differential invariants, second circular
moments of the distorted texture are described by second and fourth circular
moments of the original texture as follows:

T d d
Tain 20! = F(Isin 20 + 81gin 20 + 25!(:052@ - glfsinﬂo + ?2(3 + Icos4qo)) (15)

T d
Icos?tp’ o4 i—“,([cos 20 + SIcoquo — 2¢lgin 20 + ?1(3 = Icos4qo) = ;Isin 4;9)(16)

where Igin 2, Tcos 25 Isin4yp and Ieos4, denote second and fourth circular moments
of the original texture respectively. Note that the moments of distorted texture
are described by simple linear combination of the moments of original texture.

2.4 Multi-Scale Texture Moments

In the previous section, we derived the relationship between the moments of the
texture and the components of the affine transformation. We have only two equa-
tions, and there are four unknown parameters in these equations, i.e. four com-
ponents of the affine transformation. Due to this lack of constraints, we cannot
compute the affine components uniquely from the moments of the texture. In this
section, we propose an efficient method to compute four components of the affine
transformation reliably, using the moments of scale-space representations of the
image.
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As shown in the literature [6, 12], we can observe the different image structures
in one image using scale-space representation: a certain scale extracts a certain
structure in the image and a different scale extracts a different structure. Image
features extracted by different scales in an image distorted by an affine transfor-
mation belong to physically different image structures, but are distorted by the
same affine transformation. This means we can automatically obtain moments
which are derived from different image features but are affected by the same affine
transformation by choosing different scale-space representations. Combining two
or more scale-space representations with derived equations of moments and the
affine transformation, we can compute all four components of the affine transfor-
mation directly and reliably without any correspondence.

Consider two different scale-space representations, whose scales are ¢, and s,
to have different texture moments defined by (9), (10), that is [sin 2y, and leos2e,
for t1 and Isn 24, and Ieesay, for ta, and these moments are changed to Iy, 29,1
Leos ¢t Isin2¢y and leosa,y by the affine transformation. Then, from (15) and
(16), the relationship between these texture moments and the components of the
affine transformation can be described as follows:

Ti
TlLIcos 290 T Leos 294

1 1
T Icos?wl =2Lin 241 5(3 = -lrcos‘lq.al) = 3 1ain 44y 5
. - . 17, 1
TlLIsm 2¢) Lsin 2, _ | Tin2ey 2Lcos2g, =5 Lin 4, 5(3 + leosde,) c
N — . 1 1r,
;11“8 20! = Ic“ 203 Ieos 242 _215“1 2 5(3 P Icos 41.09) _‘Qﬂrsm 4049 jl
a 1 1
1! ISiI'I 2p9 21cos 2¢a — g sin 42 5(3 + ILeos 41.0-;) 2

%Iain 295 Lsin 243

where T; and T, are the total length of the original texture elements in the scale t;
and {5, and T] and Ty are those of the distorted texture elements. We can compute
four differential components, s, ¢, dy, ds, of the affine transformation as a solution
to this matrix equation (For two different scales, the matrix will not in general
be singular). The absolute components of the affine transformation are computed
using the derived differential components and (1). This method requires minimal
information to compute an affine transformation using two different scales. We
can also use more than two scales and raise the accuracy and robustness of this
method.

The properties of the proposed method are: (1) it does not require corre-
spondence of individual image features, (2) This allows much greater interframe
motions than spatio-temporal techniques. (3) The method relies on the compar-
ison of statistics of the image patches. This will only be meaningful if the two
patches are projections of “world” textures with similar properties. This therefore
requires that corresponding areas of interest are identified. (4) This method does
not suffer from an aliasing problem which occurs when linear moments are used.

3 Theoretical Accuracy and Noise Sensitivity

In this section we compare the systematic error and sensitivity to noise of this
method with those of the linear moments method [10] and another circular moment
method, Kanatani’s stereological method [5]. For comparison purpose, in the
following we chose to use the affine transformation (arising from changing the
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orientation of a textured surface viewed under weak perspective) to compute the
surface orientation (i.e. slant and tilt).

These three methods use approximations to solve the problem in closed form,
and these approximations cause systematic errors in the estimated orientation of
the surface. We investigate these errors using 100 texture elements whose orienta-
tions are randomly sampled from a Gaussian distribution with a mean of 0 degrees
and a standard deviation of 30 degrees. Fig.1 (a) and (b) show the systematic error
in the slant and tilt angles of the proposed method, linear moments method and
Kanatani’s stereological method. The proposed method exhibits the best accuracy
in slant angle and good accuracy in tilt angles, independent of the slant and tilt
angles, although the accuracy of Kanatani’s stereological method degrades rapidly
with slant and tilt angles.

Next we compare the noise sensitivities of these three methods. Random Gaus-
sian noise with a standard deviation of 1.0 degree was added to the orientation
data of the texture elements. The errors in slant and tilt angle caused by the
random Gaussian noise are shown in Fig.1 (c) and (d). Although all methods are
sensitive to noise in the case of small slant, the slant estimated by the proposed
method is less affected by noise than that of the other methods. As shown in
(d), all methods have similar noise sensitivity with respect to the tilt angle. Al-
though the accuracy and noise sensitivity change in terms of the type of texture,
the proposed method is more accurate and less sensitive to noise in most of the
cases. It also has the advantage that it does not suffer from the aliasing problem
of using linear moments and can be used to compute the rotation component and
the change in scale as well.

4 Experiments

We present experimental results which show that this method does not need any
assumptions like directional isotropy or spatial homogeneity to estimate the four
components of the affine transformation. To demonstrate the accuracy of the
extracted affine transform, we have again chosen to assume that the original images
are of textures on a fronto-parallel plane and we use the affine transformation to
estimate the new orientation of the plane and the scale assuming it is viewed under
weak perspective. Fig.2 and Fig.3 shows the results from this method tested on
an artificial texture and stained glass images. The center and right ellipses in
Fig.2 and Fig.3 show the calibrated and estimated orientations and the changes
in scale using shape distortion from the original circle shown in the left, and
are qualitatively good even with non-uniform textures. Table 5 compares the
accuracy of this method quantitatively for each sample image with the known
fiducial orientation. The error seen in the case of the stained glass image is mainly
caused by the difference of the sampling points between the original image and
the distorted image, that is the difference of the area of interest between the two
images.
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5 Conclusion

In this paper we have proposed a novel method to compute the four components of
an affine transformation from the changes in circular moments of edge orientation.
A method to combine the moments of the texture image and the scale-space rep-
resentation is described. This method does not require any point, edge or contour
correspondences to be established, and is simple and efficient. The estimated affine
transformation is accurate enough to be useful. However the problem of selecting
the area of interest and choice of smoothing scale remain to be investigated.
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Figure 1: Results of systematic error and noise sensitivity analysis. (a) and (b)
show the systematic errors in the estimation of the slant and tilt angles of the
surface. The solid line, dashed line and dash-dot line show the error of the pro-
posed method, linear moment method [10] and Kanatani’s stereological method [5]
respectively. (c) and (d) show errors in slant and tilt angle of the surface caused
by additive Gaussian noise with standard deviation of 1.0 degree.
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Figure 2: Results of preliminary experiments (artificial texture image). Examples
of the images distorted by arbitrary affine transformations were processed by our
affine transform from texture moments algorithm. Images in the top row are
the original and distorted images of scale (variance) ¢t = 0, and the original and
distorted images of scale ¢t = 15. Images in the second row show the edges detected
from the images in the top row. These images show that different scale-space
representations have different image structures. The center and right ellipses in
the third row show the real and estimated orientation and the change in scale using
normal vectors and oriented circles whose size and shape correspond to the scale
change and distortion from the original fronto-parallel circle shown in the left.

Table 1: Accuracy of the surface parameters, change in distance, r, rotation, 0,
tilt, 7, and slant, ¢ which are computed from the differential invariants, s, ¢, dy,

ds.
I Images [ r16C) [ ) [a(®) ]
True 1.10 | 0.0 [ 60.0 | 30.0
(a) artificial texture | Estimated | 1.12 | 0.3 | 61.1 | 31.9
True 1.00 | 0.0 | 120.0 | 30.0
(b) stained glass Estimated | 0.97 | 0.6 | 123.5 | 32.4
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Figure 3: Results of stained glass image. See Fig.2 for the caption.
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