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Abstract

A pairwise geometric histogram (PGH) encodes the probability of ge-
ometric co-occurrences between any line and the set of lines defining
an object. An object therefore has a set of PGHs associated with it,
one histogram for each line. We describe here the way in which the
probability of geometric co-occurrence is calculated and entered in the
histograms, the different ways these histograms can be denned and
the completeness properties of the set of histograms in terms of arbi-
trary shape representation. We show that this representation provides
unambiguous shape representation by demonstrating an inverse recon-
struction algorithm. We conclude that the methods suggested in a
previous paper for object recognition and location provide a complete
solution to the problem of recognition of edge based descriptors for
fixed 2D projected views of rigid objects.

1 Introduction

The process of PGH generation works on a line based approximation to the edge
data in the scene. The set of lines comprising an object are obtained from an
edge string segmentation algorithm which delivers a polygonal approximation to
the edges present in an image. Each line is regarded in turn as a reference line
and its geometric relationship with all other lines in the scene is computed. The
geometric measures relating each pair of lines are stored in a histogram as a prob-
ability density distribution. In order to compute the probability of a particular
geometric co-occurrence we need a statistical model of the geometric measurement
process. The probabilistic encoding should therefore be related to the polygonal
approximation algorithm.

The segmentation method that we use is a recursive algorithm which approx-
imates an arbitrary string of individual edge elements (edgels). The algorithm
proceeds as follows:

• A straight line is drawn between the endpoints of the string.

• The perpendicular distance of closest approach to the line is calculated for
each point on the string, and the maximum identified.
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• If the ratio of the maximum perpendicular distance to the length of the
original line is greater than an approximation threshold, A, then the string
is split at this point, and both parts are reprocessed

This algorithm continues until all string fragments are represented to an ac-
curacy specified by the threshold. The algorithm is similar to that proposed by
Lowe [1] except that the segmentation criterion is based on a relative rather than
absolute distance measure.

In order to properly encode the original data in the PGH we need to know the
expected distribution of edgel orientations in the string. On the assumption that
the most significant variation of the data away from purely linear behaviour will
be second order, we can derive a relationship between the segmented line A-C and
the parameters of the circular arc A-B-C (Figure 1).

Orientation Probability Distribution.

Figure 1: Relationship between the segmented line and the arc

If the approximated edge string represented an arc of a circle then the midpoint
of the string would have the same orientation in the image, 6, as the approximated
line with endpoints of orientation 6 — 66 and 6 + 66 where 66 can be related to the
segmentation parameter A as follows.

From Figure 1 it can be shown that a/c = (1 — cos(68))/sin{66), and making
the standard approximations to the trigonometric functions for small angles gives
a/c = 66/2. The definition of the segmentation parameter states that a/2c < A,
and thus 66 < 4A.

Therefore, to second order, the edgel data will have a uniform probability of
distribution of orientations between upper and lower bounds, with these bounds
being fixed by the segmentation parameter A.

On the basis of this model of shape approximation the appropriate method
for making entries in the PGH for relative orientations between lines is in the
form of a triangular distribution obtained by convolving the rectangular expected
distributions of orientations found in the approximations to the reference line and
the object line. This distribution needs to be integrated between the upper and
lower limits of any bin in the PGH in order to compute the weighting vector, Ac,
for each entry.
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The source of correlation between small variations in object line rotation and
the estimation of perpendicular distance is shown in Figure 2. Provided that the

object line

" •" "" reference line

Figure 2: Effect of small angle variations on perpendicular distance

perpendicular distance is encoded on a scale which is not affected by small (typ-
ical) rotations in the reference line, correlated effects between the estimation of
the perpendicular distance and the relative orientation are not be observable in
the PGH and therefore do not need to be modelled. This is achieved when the
entries into the PGH are convolved with a function which has a scale similar to
the maximum expected correlation. We choose the form of this convolution to
be a top hat, which has the property of invariance to line fragmentation. The
total weighting function required to make entries into the PGH for a particular
reference and object line pair Wro is given by the outer product of the angle prob-
ability distribution, Ac, and the trapezoidal perpendicular distance probability
distribution, Lc, multiplied by the length of both lines.

Wro = \lr\\h\Lc ® Ac

Construction of the full histogram is then achieved by summing these compo-
nents for all lines in the scene.

Wr =

A typical histogram is shown in Figure 3.

Figure 3: A typical pairwise geometric histogram

The segmentation algorithm adopted here is especially suited to a simple com-
putation of the probability of geometric co-occurrences. Comparison of these his-
tograms to determine the best match is then achieved using a finite approximation
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to the Bhattacharya distance measure LB , which is the appropriate way of com-
paring PDFs.

LB = J2 J2 VWi(d, $WW2(d, 9)
d e

This has been shown to have good discrimination properties on data from
images containing occlusion clutter and line fragmentation [2].

2 Constructing Alternative Representations

Having established the method for generating the geometric co-occurrence proba-
bilities it is now necessary to describe some of the alternative definitions of mea-
surement axes for the whole PGH. The information we wish to encode is the
relative angle and range of perpendicular distance between any two lines in the
object. There are several ways of doing this depending on the information that
we wish to use. The possible sources of information are:

• Angular handedness of relative orientation (clockwise/anti-clockwise)

• Direction to intersection of lines.

• Edge contrast orientation.

A subset of the resulting range of possible histograms is shown in Figure 4.
In this, each small rectangle defines a region of area 0 - TT x 0 - dmax. Multiple
entries within a region implies summation of data with the orientations shown by
the associated coordinate axes. Wrap around directions are shown at the edges of
the plot.

Figure 4(i) shows the most general form of histogram, from which all the other
types can be derived. The reference line is assigned an arbitrary direction, and the
object line is assumed to directed away from the intersection of the line extensions.
From this information the relative angle and perpendicular distance are calculated.
If the assumed direction of the object line agrees with the direction indicated
by the contrast information, the entry is placed in the first or third columns of
the histogram, otherwise in the second or fourth columns. If the intersection
direction of the reference line agrees with the arbitrarily assigned direction the
entry is placed in the first or second columns of the plot, and otherwise in the
third or fourth columns. There are two alternatives for the constructed histogram
depending on the initial choice of arbitrary direction.

If the assigned direction of the reference line is ignored then the histogram size
is halved and we obtain Figure 4(ii). This still makes use of the edge contrast
information, which is generally unreliable in practical situations. If the edge con-
trast information is ignored, we obtain Figures 4(iii) and (iv), which use and ignore
the assigned direction of the reference line respectively. If the assigned direction
rather than the intersection direction of the reference line is used to calculate the
angle and distance measures, we obtain Figure 4(v). This type of histogram differs
from Figure 4(iv) in the important fact that all object lines lying to one side of
the reference line will be entered in the histogram on the same side of the distance
axis.
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Figure 4: The family of pair wise histograms

Finally, if we ignore the handedness of the relative angle, we obtain Fig-
ures 4(vi) and (vii), using and ignoring the assigned direction respectively.

II t y p e j

(i)

(")

(iii)
(iv)
(v)
(vi)
(vii)

scale
No
No
No
No
No
No
No

rotation
Yes
Yes
Yes
Yes
Yes
Yes
Yes

translation
Yes
Yes

Yes
Yes
Yes
Yes
Yes

extension
Yes
Yes
Yes
Yes
Yes
Yes
Yes

mirror
No
No
No
No
No
Yes
Ye«

contrast |
No
No
Yes
Yes
Yes
Yes
Yes

Table 1: In variance properties of the various histogram types

Given a random population of data in these plots for arbitrary objects we would
expect the disambiguational ability of each of these alternatives to increase with
total histogram area. However, as mentioned above, absolute line orientation is
not reliable in most practical applications, therefore the most useful representation
must be considered to be that shown in Figure 4(iii). In the next section we will
develop a theoretical argument regarding completeness of this representation.
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3 Representational Completeness

Work has already been published regarding the smooth variation in PGH with
continuous shape deformation and the resulting gradual change in similarity mea-
sure [3]. Work has also been presented demonstrating the robustness of the scheme
to missing data and added noise [4]. However, for the recognition system to be
fully quantified we need to assess its discriminability.

One approach would be to test the performance of the system on a set of
standard test objects. This is important for system demonstration but is not
really useful for quantitative analysis. A better approach would be to develop a
prediction of performance based on a theoretical evaluation of the algorithm which
may then be used to predict the expected performance of the recognition system
for arbitrary data sets. The statistical basis of the PGH representation makes the
possibility of such an evaluation much more likely than with other, more ad-hoc
recognition systems.

Currently we can show that use of the Bhattacharya similarity measure will
result in optimal recognition performance for individual histograms, but as these
histograms are constructed with invariance properties there will inevitably be some
cases where different objects could give rise to similar histograms, leading to am-
biguity. However, full recognition schemes based on data combination in a neural
network [5] or a Hough transform [2] make use of the complete set of pairwise
histograms. If we could show that the set of histograms uniquely defines an object
this would mean that the representation scheme was complete and it may then be
possible to show that recognition is optimal. One way to do this is to show that
an inverse transformation process exists which will reconstruct the original data,
in this case the line based description of the object. This process is possible with
some of the forms of PGH described above but in order to explain the process,
some properties of the PGH need to be discussed.

Some of the types of PGH for an individual line can be considered as a projec-
tion along the direction of the line through the area of the object onto a projection
axis (the perpendicular distance axis). This is only true for the histograms shown
in Figure 4(i),(ii),(iii) and (iv) as the construction processes for the other his-
tograms sometimes place data on the opposite side of the projection axis due to
the lack of knowledge regarding absolute orientation of the reference line. Nor-
malisation of entries from each line pair ensures that processes such as integration
of contents for each angle bin onto a perpendicular projection axis will produce
values which can be regarded as integrated edge densities. Thus, if the histogram
includes entries for all the lines in the object, the mean of the distribution cor-
responds to the projection of the centroid of the original data onto the distance
axis, as shown in Figure 5.

Projection of data in the histogram onto the angle orientation axis produces a
ID histogram which is completely scale invariant (the original form of PGH [5]). If
the histogram again includes entries for all the lines in the object, this projection
of the PGH must be identical for each line in the object but for a shift of origin.
The relative orientation between lines in the object can thus be determined by
determining the shift in the angle projection histograms.
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object
Pairwise Geometric Histogram Projection

Figure 5: Calculation of the centroid from the projection onto the distance axis

4 Reconstruction Algorithm

We now have enough information with which to describe a reconstruction algo-
rithm. Each histogram contains information regarding the integrated density of
edges through the region of the object along a direction in the original image spec-
ified by the reference line. Each projection can be aligned with the centroid of
the object using the distance projection histogram and oriented relative to others
using the angle projection histogram. Thus the set of pairwise histograms pro-
vides a complete set of projections through the object analogous to a 2D image
reconstruction process such as is commonly found in medical image processing
applications. In the examples shown below we have used the exact values of orien-
tation and centroid which are stored when the histograms are constructed. This
has been done for speed, and does not invalidate the technique, as the matching
and segmentation processes also have access to and use this data. Thus no data is
being used which is not used by the recognition scheme. Similar but slightly less
well defined results are obtained if the calculated values are used.

Many schemes have been described for reconstruction of images from projec-
tions, but most require the data to be of a particular nature, or are extremely
computationally intensive [6]. The process requires the construction of a large set
of linear equations for the known projections in terms of the unknown localised
densities (pixels). Least-squares methods are clearly applicable and could be used
to estimate the density of data in the image. For the set of n geometric histograms
havin m distance bins, this implies that we have nm constraint equations. How-
ever, the situation is slightly better than this as a zero projection value can specify
a whole set of edge densities as will be described below.

As image plane pixels cannot contain a negative number of edgels, then if a
projection total is zero, all image plane pixels that such a projection includes
must have contained zero edgels. This can be used as the basis of a reconstruction
algorithm when reconstructing the image with pixels whose side length is less than
half the size of the projections, so that even in the worst case1 a contiguous stream
of pixels will remain, as shown in Figure 6.

The reconstruction is performed by eliminating those pixels in the reconstruc-
tion plane that could not have contained an edgel in the image plane. The data
for lines lying within a small range of absolute angles is generally sparse, so recon-

1A vertical or horizontal non-zero projection between two zero projections.
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P 3 = pixel which cannot be eliminated by another projection

Figure 6: Elimination of half-size pixels

struction is performed with this data. Full reconstruction is performed by simple
addition of the results of reconstructions for a complete set of small angle ranges.
In this case it is natural to use the extents of the angle bins from a particular his-
togram as the angle ranges. The data for these processes is obtained by selecting
an angle bin-distance bin entry from a type (v) histogram2.

As the relative orientations of the reference lines of the histograms are already
known, they may be used to linearly interpolate the corresponding angle bins in
other histograms, so as to include all the angles in the range being considered,
but possibly also including other angles. This allows projections for lines with
the same range of absolute orientations, but with the projections parallel to each
histogram's reference line. Thus the first histogram will give a band across the
reconstruction plane, with subsequent histograms cropping this band. The limits
parallel to each line will be well defined, as there will a projection from a histogram
having the line as its reference.

Figure 7 shows the results of the reconstruction process. Figure 7(i) shows the
original line data, (ii) shows the results of a projection from one histogram, (iii)
shows the results of a reconstruction for a single angle range, and (iv) shows the
complete reconstructed image3.

Figure 8 shows how the results change for coarser resolutions. In this case
there are some pixels which have not been eliminated so that the image provides
a superset of the correct pixels. This estimate of pixel location may be refined
further by least squares solution of the remaining constraint equations but this
has not been attempted here. Even in this current form the algorithm illustrates
that even at relatively coarse histogram resolutions most of the shape information
remains4.

5 Discussion and Conclusions
The process of entering probability density distributions in a histogram incorpo-
rates a model of both the segmentation process and the process error in the rep-
resentational scheme. This makes the subsequent recognition scheme very robust
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(i) Original line data (ii) Projections from one histogram

\

(iii) Reconstruction of one angle range (iv) Full reconstruction of the lines

Figure 7: Fine resolution reconstruction process results

to both of these factors.
Reconstruction ability indicates that the set of histograms is a unique and

complete representation of the image data. This must be a requirement of any
representational scheme that is to discriminate between sets of arbitrary shapes.
In practical use, the PGHs are typically 32x32 in size, resulting in a relaxation of
the geometric constraints. Even so, the multiple redundancy of the data results in
the retention of almost all salient edge information. If this histogram "blurring" is
artificially increased, then this scheme is effectively able to represent deformable
shapes as well as rigid ones. This appears in the reconstruction process as a
thickening of the edges.

A recognition system which makes use of the set of geometric histograms in
the appropriate manner can be considered as an algorithmic approximation to
blurred edge template matching with edge orientation sensitivity. To date we have
identified two separate ways of combining the recognition of a set of histograms
into a single recognition process, the first is by set classification using a hierarchal
neural network [5] which provided only scene content information and the second
by use of the generalised hough transform [4] which provided object location. We
are currently extending this later method to use a version of the probabilistic hough
transform to improve robustness and allow the recognition of scaled objects. This
work will be the subject of future papers.
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Figure 8: Coarse resolution reconstruction process results

We have shown that PGHs are a complete, unique and robust scheme for
representing arbitrary shapes in terms of their edge information. Their behaviour
under object deformation makes them ideal candidates for forming the basis of a
view based recognition system.
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