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Abstract

This paper presents a novel approach to matching boundaries in im-
ages. Carefully chosen attributes of boundaries are used to build a
parameter space. Potential matches are searched for in the parameter
space, rather than in the topological space. The ‘goodness’ of each
potential match is measured by means of an affinity function. Final
matches are obtained using Simulated Annealing, in which the topol-
ogy constraint is integrated to drive a global optimisation.

Our method delivers pairings which are topologically correct and does
not require any of the commonly used constraints, such as the maz:-
mum velocily, constant disparity gradient or the epipolarity consiraint.
This characteristic makes the method applicable for motion and track-
ing, as well as for stereopsis. The current implementation is fully pre-
sented together with the results obtained, which are most satisfactory.

Keywords: Boundaries, Parameter space, Correspondence com-
putation, Topology constraint, Simulated annealing.

1 Introduction

The choice of appropriate features is crucial to motion perception in general, and
to the correspondence computation in particular. In order to solve the correspon-
dence problem, one must first decide on the elements to be matched in the scene.
There is a trade-off between the complexity of the monocular analysis, used to
extract the elements to be matched, and the complexity of the matching process.

Low level features, like edgels, convey very little information, and often yield
ambiguous output. Therefore, these features are difficult to match correctly be-
tween successive frames. Very high level features, such as surface patches or ob-
jects, are easy to match, but very difficult to detect.

Boundaries, however, are more structurally evolved features than edgels. They
are geometrically unambiguous, involve implicit grouping and continuity informa-
tion, and are relatively easy to extract from images. Matching boundaries between
successive frames can yield quality information about the scene being viewed.
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In this work, we present a computational approach to the correspondence prob-
lem which uses connected boundaries. We assume that boundaries do not undergo
drastic variations (in shape, contrast, and length), and have very similar perspec-
tive projections in successive image frames. This does not imply a serious restric-
tion on the domain of applicability of the approach. The similar shape of image
projections of the same solid object curve is quite plausible, given an appropriate
sampling rate.

Additionally, we assume that topology is conserved almost everywhere between
two consecutive frames. Onset and end of occlusion between two consecutive
frames are the cases where the topology assumption is violated. These events are
rare, and can be turned into an advantage: locations where topology is not con-
served between frames can be analysed to detect beginning and end of occlusion.

Attributes of boundaries are used to build a parameter space. Potential matches
are searched for in the parameter space, rather than the topological space. The
goodness of each potential match is measured by means of an affinity function.
Final matches are obtained using Simulated Annealing, in which the topology
constraint is integrated to drive a global optimisation. A fundamental difference
between our approach and existing approaches is the use of the topology constraint
to drive global matches. Final matches are expected to be topologically correct
and yield sub-optimalities free correspondence.

2 Related work

Many researchers attempted the matching of line segments [4], or piecewise linear
representations of boundaries [14, 13, 7, 17]. To limit the combinatorial search for
pairings, additional constraints were needed, some of which restrict the domain
of applicability to stereo correspondence. Mazimum wvelocily, constant disparity
gradient and epipolarity are among these constraints.

Deriche and Faugeras [3] used points of high curvature to guide the matching
of curves. The epipolar constraint was used to limit the search area for potential
matches of high curvature points. Gradient direction and curvature were used to
select plausible matches. The corresponding curves of each element of the obtained
pairs of high curvature points were associated. Ambiguities were resolved by tak-
ing as final matches the pair of curves with maximum matched high curvature
points. The epipolar constraint limits the applicability of this technique to stereo
matching. Moreover, this method relied on the existence of high-curvature points
in the images. Hence, smooth boundaries were not used.

In their approach, Brint and Brady [1] used elastic strings/snakes to repre-
sent curves, and measured the amount of deformation the strings have undergone
between corresponding curves in images. The amount of deformation was mea-
sured using a cross energy term composed of two parts: a disparity term, and a
similarity term. The similarity term encourages corners to match against corners.
The final stage consisted of a search to maximise the sum of the scores from all
possible pairings. The combinatorial nature of the approach (trying all possible
pairings), and the two optimisations needed for snake representation, made it a
very expensive solution.
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Wolfson [21] used characteristic strings (a string of real numbers representing
pointwise curvatures) to match two given curves. Elements of the characteristic
strings of each curve were used to increment a shift accumulator. Shifts in a
band around local maxima were used to find the longest matching subcurve. As
admitted by the author, this was not a robust step. Beside the combinatorial
nature of the overall process, topology and contrast were not used.

Wilson and Hancock’s junction matching method used topological information
[20]. Although there is an element of duality between their approach and ours, in
their approach, only boundaries terminating at junctions were used. Additionally,
the topology constraint used does not account for imperfections at junctions.

In general, existing algorithms (with the exception of [20]) rely on sliding curves
along each other to find common portions and/or positional constraints, such as the
epipolar constraint or the maximum velocity constraint. This feature makes them
unsuitable for motion analysis. The spatial connectivity between curves/segments,
and topology, are not used.

3 Our approach

Boundary fragments are first extracted from Spacek’s first difference magnitude
surface [18], which combines both edge detection and boundary thinning.

The second stage consists of bridging gaps in boundaries, repairing boundary
junctions, and constructing the boundary adjacency graph. Evidence from existing
fragments and perceptual groupings are used by a local non-iterative algorithm to
select the best joins and/or junctions that satisfy specific structural conditions.
This algorithm is described in detail in [16]. The adjacency graph is updated
accordingly to reflect the topological structure of the resulting boundaries. Loose
connections at junctions, as in Figure 1, are also included in the graph.

The third stage, which is the main subject matter of this paper, consists of the
correspondence matching.

Figure 1. (a) a set of boundaries By, By, Bs. (b) points By, By, By respectively
denote boundaries By, By, By in the n-D space (a1, as,...,a,). Arcs represent the
topology constraint.

3.1 Parameter space

The parameter space was introduced by McCafferty to extend the iconic repre-
sentation of visual data from (z,y, grey) to (z,y, grey, a1,az,as,...,a,) [12]. In
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contrast to McCalfferty’s representation, where the tokens are accessible only by
their coordinates (z,y), we use a representation which allows access to bound-
aries either by their attributes or by their neighbourhood. Figure 1 shows the
combined structure for representing neighbouring boundaries {B;, By, B3 }.

The boundaries’ attributes (a;,as,as,...,a,) are used to construct an n-
dimensional (n-D) space. Boundaries with the same set of attributes are linked in
a list anchored in the same location in the n-D space. To capture topological prop-
erties, the ‘connected-to’ relationships are included as pointers to the structures
within n-D space. As a consequence of this representation, two neighbourhoods
can be defined for each token:

e Topological Neighbourhood: is the set of first neighbours in the boundary
fragments’ adjacency graph.

e Atiributive Neighbourhood: is the hypervolume defined by the elementary
displacements (day, das,...,da,) around a given token (ay,as,...,a,).

We use length and contrast to build a 2-D space PS, for every image p. Other
attributes, such as moments [11] and energy, can also be used.

3.2 Potential pairings

For a given token ¢ € p, the search space PM(t) for candidate matches is given
by the area [L(t) — aL(t), L(t) + aL(t)] x [C(t) — BC(t),C(t) + BC(t)] C PSother(p)s
where «, 3 are the ratios of changes accepted for the length L(t), and the contrast
C(t), for the token t.

3.3 Affinity function

The affinity function is a means to evaluate the goodness of a match. Matches
with a low goodness value are most likely to be discarded. The affinity function
Aff(t,t") compares the characteristics of two tokens, one from each image, and
returns their degree of similarity. Let ¢ be a boundary in image p, and ¢’ a potential
match in ¢, t' € PM(?):

arsty = (HO= U™ (ICO=CON ™ 0, ¢y 70,0

where L(t) is the length of the boundary ¢, and C(t) its contrast, MmL =
|maz.(L(e))—min.(L(e))| is a normalising factor for the length attribute, MmC =
|maz.(C(e)) — min.(C(e))| is a normalising factor for the contrast attribute,
T(t,t") is the topology factor (see Section 3.3.2) and S(t,t') is the dissimilar-
ity in shape between t and t’ (see Section 3.3.1). Weights (w;, w2, w3, ws) in
the form of exponents are used to adjust the relative strengths with which each
attribute affects the final result. Note that Aff(t,t') € [0..1], and ), w; = 1.
w; < wj implies that more weight is given to the attribute corresponding to w;.

3.3.1 Shape

The human visual system is excellent at comparing shapes in general, and curves
in particular, independently of their size, contrast and length. It also seems that
the more regular the curves are, the quicker is the comparison.
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Many techniques for shape comparison exist in the literature. Their perfor-
mances depend on the representation adopted for boundaries. Moment based
techniques [19] work in real time, but are very sensitive to noise. Polynomial
representations are not translation and rotation invariant. The naive comparison
(Yo lai — b;|?)%, where (a); and (b); are the polynomial coefficients of the two
boundaries, does not work. Fourier descriptors based similarity measures [15] give
good results, but are expensive to compute. Generally, one has to translate, ro-
tate and expand one of the curves until they are superimposed, and then compute
the area between them. The smaller the area is, the more similar are the curves.
However, it is not possible to achieve the superimposition at this stage, given that
expansion, rotation and translation are unknown yet.

We have chosen the chain codes [6] for representing boundaries in order to
obtain an approximate invariance under rotation, translation, and expansion. The
comparison of the boundary shapes is based on the Mahalanobis distance between
the frequencies of various types of boundary corners, represented by first differences
of adjacent chain code digits. Barring quantisation problems, this is fairly stable.

The dissimilarity measure S(B, B") between curves B and B’ is defined to be:

n_ L& (a(B)  aB))’
S(B’B):FZ(TE‘L(B’))

i=0

where L(B) is the length of curve B, ¢;(B) is the number of corners of type i on
B, and N is the number of distinct corner types (N depends on grid connectivity).

If S(B, B') is below a certain threshold ¥, the two curves are judged similar,
and S(B, B’) is used in the computation of the affinity. However, S(B, B') is
ignored for pairs for which S(B, B’) > W. This shape dissimilarity measure is
O(n), where n is the number of points of the two boundaries.

3.3.2 Topology

The use of topology consists of taking into account the spatial interconnections
between curves in the affinity function. A potential match (¢,t') is n-consistent, if
there are at most n ¢’s spatial neighbours that have as potential matches neigh-
bours of t'. Let (¢,#') be an n-consistent potential match, we define the topology
factor T'(t,¢') in the following manner:

Tt,t"Y=(n+1)/(g+1)

where g is the number of ¢’s neighbours. Thus, if £ has n neighbours, the contribu-
tion of the topology factor to the match (¢,t’) is high if the match is n-consistent
(i.e., all neighbours of ¢ have neighbours of ¢’ as potential matches), and low if the
match is 0-consistent.

3.4 Global considerations

At this stage, the problem becomes as follows: for every boundary fragment in
one image, select its correct match from the set of its potential matches.

One way of using the affinities would be to select those matches with the highest
affinity values as the correct ones. Selecting matches in this way amounts to only
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looking at local information (i.e., local affinity information), since the information
provided by the comparison of the attributes comes only from two tokens. The
selection of a single wrong match makes two tokens unavailable for the matches
they really belong to. A wrong match may cause further incorrect matches in a
knock-on effect. Thus, a global approach is necessary to avoid such problems.

Simulated Annealing [10] was retained as a plausible strategy to our approach.
Unlike the genetic approach [8], it is not necessary to work with more than one state
at a time. Additionally, finding a suitable crossover operator for combining aspects
of each state is problematic. On the other hand, simulated annealing was also
preferred to a stochastic relaxation strategy [5] on the basis of the results reported
by Jones [9]. Moreover, simulated annealing has been successfully used in various
machine vision problems such as: perceptual grouping [12], image processing [2]
and region-based correspondence computation [9].
Two entities need to be defined when applying simulated annealing to a problem:

e The search space: It is the set of all possible one-to-one pairings of boundaries
(see Figure 2). (t1,t2) € fi X f2 is chosen as a potential pair only if t; € PM (1)
and t, € PM(t1), where PM (b) is the set of the possible matches of b.

e The energy function: The energy function is simply the sum of the energies
of all current pairings. The energy of a pair (¢1,%2) is defined as Aff(t;,12) *
Aff(ta,t1). The energy function is to be maximised rather than minimised (as-
suming an affinity of 1 represents a perfect match, and 0 represents no match).
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Figure 2. Ensuring a 1:1 match.

Ensuring a 1:1 mapping of boundaries requires the following scheme when
creating new situations: Let (p,s) be the desired new pair (see Figure 2). If
s = ¢, no change is done. If, however, ¢ # s, subtract the energy due to the pair
(p,q) from the energy of the current situation, and undo the pair (p, ¢). Let, if it
exists, r be the node in frame f; that has s as match in the current situation. Undo
the pair (r,s), and subtract its energy from the energy of the current situation.
Create the pair (p,s), and add its energy to the energy of the current situation.
If possible (i.e., »r € PM(q) and ¢ € PM(r)), pair r and ¢, and add the energy of
the pair to the energy of the current situation.

3.5 Constrained simulated annealing

One way of implementing the topology constraint in simulated annealing is by
selecting situations from the pool of consistent pairings. The stochasticity of such
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process is questionable. Moreover, computationally speaking, generating the pool
of consistent matches is as expensive as graph matching techniques.

Instead, we use strong matches to guide the matching of their neighbouring
boundaries at every iteration. A match (p, ¢) is said to be strong iff PM(p) = {q}
and PM(q) = {p}. When selecting a new match for a node p from the set of its
potential matches PM(p), we select the one with the highest number of strong
neighbours, even if this selection may result in lowering the energy. Such a match
is marked sfrong, and may guide the matching of other nodes throughout the
iterations. If there are no strong neighbours, the selection is done at random, as
in classical simulated annealing.

4 The results

The parameters that govern the matching process are: min; and min, for the min-
imum length and contrast of boundaries used; « and g for the ratios of changes
allowed on length and contrast; wy, ws, ws, wy the respective weights associ-
ated with length, contrast, similarity, and local topology attributes in computing
affinities; ¥, the threshold used to declare curves similar. The values for these
parameters were obtained empirically throughout a series of runs over diverse im-
ages. Typically, min; = 10, min, = 5, ¥ = 0.007, « = 0.15, # = 0.15, and
(w1, w2, w3, ws) = (0.3,0.4,0.2,0.1). However, these values can be easily changed
to adapt the system to specific situations.

Figure 3. (a) & (b) Ezpanding chessboard 64264 to 68z68. (c) Pairings obtained
with wy = 0, and with non-constrained simulated annealing. (d) Pairings obtained
with wg = 0.09, and with non-constrained simulated annealing. (e) Pairings ob-
tained with constrained simulated annealing.

The above synthetic sequence was generated to test the topology constraint.
The average number of potential matches per boundary in this experiment is eight.
This is due to the fact that all boundaries found in the chessboard are very similar
in shape, length and contrast. Pairings of Figure 3(c) were obtained without the
topology component when computing local affinities. Only the four boundaries in
the corners were paired correctly, since each of them has only one potential match
which is the true match. When using the topology factor in computing local



62

affinities, a greater number of correct pairings were obtained (see Figure 3(d)).
This was expected because the topology factor introduced in the computation
of affinities is of a local nature. Figure 3(e) shows the matches obtained when
applying constrained simulated annealing. Only four iterations were necessary.

Figures 4-6 and Figures 7-9 show experiments with real pairs of images.
The maximum number of potential matches per boundary is two (in each case).
The final (correct) pairings were obtained respectively in four and three iterations.
The process is conservative, delivering correct matches for the paired boundaries.
The degree of its success on a particular image is thus best critically judged by
the number and nature of the remaining unmatched boundaries.

Figure 4. Image of several objects.
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Figure 6. Matched and unmatched boundaries.
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Figure 7. Image of two objects. The tmage on the right was obtained after moving
the object behind.

Figure 9. Matched and unmatched boundaries.

5 Conclusion

We presented an approach to boundary-based correspondence computation which
uses attributes of boundaries and integrates the topological structure of boundaries
into the computation.

Many further useful results can be derived from the obtained pairings. Un-
matched boundaries together with points where the topology assumption is bro-
ken have been identified and can be used for ghost boundaries detection and for
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occlusion analysis. This leads, in the first instance, to much cleaner boundary rep-
resentation of the image. Analysing junctions, their associated boundaries, and
their matches, leads to the separation of objects in cluttered scenes (the solution to
the bin-picking problem). Boundary pairings can also be used to recover reliably
the parameters of motion.
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