
Relational Matching by Discrete Relaxation

Richard C Wilson, Adrian N Evans and Edwin R Hancock *
Department of Computer Science, University of York

York, Y01 5DD, UK

Abstract

This paper describes a symbolic approach to relational matching. The novelty
of the method lies in its Bayesian modelling of relational consistency through
the use of an explicit constraint corruption process. Unlike many alternatives
in the literature, the method is not limited to the use of binary constraints; it
can accommodate N-ary relations of varying order. In consequence of this
assumed model the consistency of match is gauged by a compound exponen-
tial function of a higher-order Hamming distance between symbolic relations;
there is a single exponential associated with each potential relational map-
ping. These exponential functions naturally soften the symbolic constraints
represented by the relational mappings, The method may be operated with-
out the need for an explicit null matching process. Unmatchable entities are
identified by a constraint filtering operation once the relaxation scheme has
converged. The utility of the method is illustrated on the matching of hedge
structures in S AR images against their cartographic representation in a digital
map.

1 Introduction

Relational matching is a task that pervades computer vision at both high and intermediate
levels [1, 7, 9, 10, 11]. For instance, at intermediate levels it is basic to stereopsis [1, 7]
where image pairs must be registered prior to the computation of depth estimates and
also to sensor fusion where images from a number of different sources must be integrated
together [11]. It is also a critical ingredient at higher levels when relational models are
to be matched against segmental image entities [9]. The matching process is frequently
abstracted in terms of relational graphs [1, 7,9]; the critical ingredient being an efficient
and robust way of searching a large space of matching possibilities when the data under
study is corrupt or the model uncertain [1]. It is invariably poor initial image segmentation
that limits the effectiveness of classical graph matching methods [ 10]. The main difficulties
stem from the loss of image entities due to undersegmentation and the presence of spurious
entities due to noise or oversegmentation [11]. Since these effects corrupt the topologies
of the relational graphs, the matching process must therefore be accomplished by inexact
means.

'Funding for this research comes from DRA, Malvern. Richard Wilson is supported by EPSRC under
a CASE award. Adrian Evans is now with The Department of Production Engineering, Massey University,
Palmerston North, New Zealand.

BMVC 1994 doi:10.5244/C.8.4



44

Because of their intrinsically parallel nature and their capacity to locate consistent
interpretations from incomplete or uncertain input, relaxation processes provide an attrac-
tive means of inexact matching [2,5,9]. The relaxation algorithms available for relational
matching may be divided into two distinct categories [2,3,5]. The discrete method locates
optimal globally consistent labellings via iterative symbol swapping operations [5] and is
to be contrasted with the probabilistic relaxation method in which optimal matches are
located via the updating of continuous matching probabilities [9]. Despite drawing on very
different computational processes, the two relaxation schemes share the common goal of
locating matches that optimise a global consistency measure [8]. It is the difficulties asso-
ciated with defining a sufficiently fine global measure of relational consistency that have
provided the main obstacle to the realisation of effective discrete relaxation processes for
practical matching applications. Most of the alternatives reported in the literature confine
their attention to counting consistently matched relations [10]. Under conditions in which
there are few initially correct matches and very few, if any, consistent relations, this can
lead to a deadlocked update process [5]. It is for this reason that matching has proved to
be more computationally tractable when either abstracted in terms of attribute relations
[1] or approached in a probabilistic relaxation framework [9]. Our aim in this paper is to
demonstrate not only that the rejection of discrete relaxation as a means of matching is
premature, but that it offers certain advantages in terms of both interpretation and ease of
control.

In order to meet these aims, we present the development of a Bayesian criterion
that objectively quantifies the global consistency of match. The critical representational
ingredient in this devlopment is a set of mappings between relational subunits of the
graphs under match [10]. It is the size of these subunits that determines the effectiveness
of the matching process to draw upon relational constraints. Rather than limiting our
attention to binary or low-order relations we use subunits that consist of entire object-
neighbourhoods. Detailed development of the Bayesian criterion requires the specification
of a set of probability distributions which model the processes at play in corrupting the
consistent patterns of match represented by the relational mappings. Under the assumption
of a uniform and memoryless distribution of matching errors, consistency is gauged by
compounding a series of exponential functions of the Hamming distances between the
relations in the matched-graph and those in the model graph.

It is this mathematical structure of our matching criterion that is both unique and
endows it with greater robustness to error than the alternatives reported in the literature.
Each potential relational mapping is represented by an individual exponential function of
Hamming distance. Partially matched relational units have an increasing contribution to
the consistency measure according to their decreasing Hamming distance. Our Bayesian
approach therefore provides a natural way of softening relational constraints, which both
overcomes the problems of deadlock and renders the matching process tractable by conven-
tional optimisation methods. In the work reported here the updating to locate the optimal
matching is achieved using a deterministic MAP estimation process [5]. Although our
matching criterion has a single parameter, namely the uniform probability of matching
errors, this is used in the spirit of a control variable rather than a static quantity of fixed
physical meaning; it is gradually reduced during the relaxation scheme to impose consis-
tency through a graded hardening of constraints, much like the temperature of an annealing
schedule [2]. Because our discrete relaxation method naturally accommodates partially
matched relations, there is no imperative requirement for an explicit null-matching model.
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The basic philosophy in constructing the Bayesian matching criterion is to pool the two
sources of error together. Nodes are discarded to the null category on the basis of an arc
consistency test applied as a postprocessing step.

The outline of this paper is as follows. In Section 2 we describe the formal ingredients
of our graph matching process, including details of how the potential relational mappings
are constructed. Section 3 illustrates how this set of mappings may be exploited in
constructing a Bayesian model of matching errors and gives details of the MAP estimation
scheme used to locate the optimal matching. In Section 4 we describe the constraint
filtering technique used to assign matches to the null category. Experiments relating to a
matching application involving synthetic aperture radar data are described in Section 5.
Finally, Section 6 offers some conclusions.

2 Relational Graphs

We abstract the matching process in terms of relational graphs [1, 9, 10]. According to
this representation the nodes represent entities to be matched. The arcs represent binary
relations operating between the nodes. In the experimental study reported in Section 4 we
will be interested in matching hedge structures segmented from SAR images against their
digital map representation. Here the nodes represent linear segments. Arcs denote the
existence of a geometrically meaningful relation between two such line-segments; since
hedge structures in the data are largely associated with quadrilateral field boundaries, the
relations that most interest are those in which pairs of linear segments are orthogonal or
nearly orthogonal to one another. We have adopted this representation purely on the basis
of convenience and it does not impose a limitation on the utility of our matching method.
The framework presented in this paper is applicable to a variety of relational abstractions;
for instance we have also successfully matched Delaunay graphs representing a Voronoi
tesselation generated by the line segments. We use the notation G = (V, E) to denote
the graphs under match, where V is the set of nodes and E is the set of arcs. Our aim in
matching is to associate nodes in two such graphs G \ = (V\, E\) and Gi — (Vi, £2) using
constraints provided by suitable relational subunits. Formally, the matching is represented
by a function from the nodes in graph G\ to those in graph Gi. With these ingredients,
the match is represented by the function / : V\ —> V2. The function / consists of a set
of Cartesian pairs drawn from the space of possible matches between the two graphs, i.e.
/ C V\ x V2; it provides a convenient device for indexing the nodes in the graph G\
against their matched counterparts in the graph G2. We use the notation (u,v) £ / t o
denote the match of node u G V\ against node v € V2.

In performing the matches of the nodes in graph G\ we will be interested in exploiting
structural constraints provided by the graph G%. There are two issues at play in selecting
structures appropriate to this task. If the structural units are too small then the matching
process is impoverished in terms of the contextual information upon which it can draw
in locating a consistent match. This limits the effectiveness of the relaxation scheme,
rendering it susceptible to noise or error. If, on the other hand, the structural units are
too large, then the matching process becomes excessively burdensome in terms of its
computational requirements; the limitation stems from the need to explore the space of
relational mappings between representational subunits. We will strike a compromise
by using subgraphs that consist of neighbourhoods of nodes interconnected by arcs; for
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convenience we refer to these structural subunits or N-ary relations as supercliques.
The superclique of the node indexed j in the graph with arc-set E is denoted by the set

of nodes Cj = j U {i\(i, j) £ E}. We use the notation Rj = (ui ,U2, ••••, U|c,|) to denote
the N-ary symbolic relation represented by the nodes of the superclique Cj C V\ inthedata
graph G\. The matched realisation of this superclique is therefore denoted by the relation
Tj = ( /(ui) , f{ui),...., /(w|Cy|))- Our aim in performing discrete relaxation operations
is to modify the match to optimise a measure of global consistency with the constraints
provided by the model graph G2. The constraints available to us are provided by the
N-ary symbol relations on the supercliques of the model graph Gj. The critical ingredient
in developing our relaxation scheme is therefore the set of feasible mappings between
each superclique of graph G\ and those of graph Gi. The set of feasible mappings, or
dictionary, for the superclique Cj is denoted by ©(Cj;) = {5,|5, € V2 }. Each element
Si of O(Cj), is therefore a relation formed on the nodes of the model graph; we denote such
consistent relations by 5, = (v\, t>2, , v\Cj\). The dictionary of feasible mappings for
the superclique Cj therefore consists of all the consistent relations of cardinality \Cj | that
may be elicited from the graph Gj. In practice these relations are formed by performing
cyclic permutation of the non-centre nodes for each superclique of the requisite size; this
process effectively preserves the adjacency structure of the model graph while leaving
dictionary invariant to potential scene rotations.

3 Discrete Relaxation

Our strategy in developing the graph-matching criterion is to sum the matching prob-
abilities over the supercliques in graph G\ and to use this in the spirit of the average
consistency measure of Hummel and Zucker [8]. In order to proceed, we require a means
of computing the probability of each superclique matching as specified by the function
/ . In other words, we are interested in computing the probability of the matched relation
F, assigned to the superclique Cj of graph G\. As we noted in the previous section, the
consistent labellings available for gauging the quality of match are represented by the set
of relational mappings from Cj onto G2, i.e. @(Cj). As demanded by the Bayes rule, we
compute the probability of the required superclique matching by expanding over the basis
configurations belonging to &(Cj)

(i)

The development of a useful graph-mapping measure from this expression requires
models of the processes at play in matching and of their roles in producing errors. These
models are represented in terms of the conditional matching probabilities P(Tj \Si) and
of the joint priors P(5,) for the consistent relations in the dictionary. In developing the
required models we will limit our assumptions to the case of matching errors which are
memoryless and occur with uniform probability distribution.

To commence our modelling of the conditional probabilities, we assume that the vari-
ous types of matching error for nodes belonging to the same superclique are memoryless.
In direct consequence of this assumption, we may factorise the required probability dis-
tribution over the constituents of the relational mapping under consideration. As a result
the conditional probabilities may be expressed in terms of a product over label confusion
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probabilities

\Si\

P(rj\Si)=l[P(f(uk)\vk) (2)
*=1

Our next step is to propose a model of the processes which give rise to erroneous matches.
We assume that matching errors occur with a uniform and memoryless probability dis-
tribution. If the probability of matching error is Pe, then the confusion probabilities
appearing under the product of equation 2 are therefore assigned according to the follow-
ing distribution rule

As a natural consequence of this distribution rule the joint conditional probability is
a function of a single physically meaningful variable. This variable is the Hamming
distance H{Tj > Si) between the assigned matching and the feasible relational mapping 5,.
This quantity counts the number of conflicts between the current matching assignment F,
residing on the superclique Cj and those assignments demanded be the relational mapping
Si. With these ingredients, the resulting expression for the joint conditional probability
acquires an exponential character

P{Tj \Si) = KC] cxp[-keH(Tj, Si)] (4)

where KCJ = (1 — Pe) 'C j ' - The exponential constant appearing in the above expression
is related to the matching-error probability, i.e. ke = In ^p***'. The expression may be
regarded as providing a natural way of softening the hard relational constraints operating
in the model graph. Having developed an exponential expression for the joint conditional
matching probabilities, it only remains to specify the distribution of the prior probabilities
for consistent relations in the dictionary. Here we adopt a uniform distribution of the
available unit probability mass over the set of possibilities Q(Cj), i.e. P(Si E®(Cj)) =

A The final expression for the superclique matching probability is therefore

T £ «P[*ff(r,so] (5)

Before proceeding, it is important to comment on the structure of the above expression.
The most striking and critical feature is that the consistency of match is gauged by a series
of exponentials that are compounded over the dictionary of consistently mapped relations.
It is this feature that distinguishes it from alternatives reported in the literature [1,9]. Each
relational mapping contributes a single exponential to the probability of match. It is this
feature that allows our method to operate in a robust manner when the space of relational
mappings is large. Recent theoretical studies suggest that compound exponentials of the
type defined above offer tangible benefits over linear or quadratic measures in terms of the
number of relational mappings accommodated and the label-error probability of the result-
ing match [6]. Moreover, the importance of the different relational constraints is naturally
graded by Hamming distance; relational mappings of large Hamming distance contribute
insignificantly while those of small Hamming distance dominate. By gradually reducing
Pe, the exponentials appearing in equation (5) approach their delta-function limits. This
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effectively corresponds to subjecting the softened relational constraints operating in the
matching problem to a graded hardening. In the limit of vanishingly small error proba-
bility the matching probabilities become binary in nature; their role is to effectively count
the number of consistently matched relational units. Under these conditions our matching
criterion becomes similar in function to the relational distance measure of Shapiro and
Haralick [10]. It is also worth noting that had we adopted a confusion probability model
based on multivariate Gaussian attribute relations rather than the purely symbolic speci-
fication of equation (3), then our criterion would be equivalent to that of Boyer and Kak
[1] under conditions of small attribute deviations between the two graphs.

With the superclique mapping probabilities to hand, we can define a global criterion
of match between the two graphs. In doing this we would like to remain close in spirit
to the average consistency measure widely employed in relaxation schemes [5, 9]. For
this reason, we base our criterion on the average superclique matching probability. The
functional associated with the matching / : V\ —* V2 is

^ (6)

With the average consistency criterion to hand we can iteratively update the mapping
function / : V\ —• V2 on a node-by-node basis to locate an an optimal match. This
updating process is effected by replacing one of the Cartesian pairs belonging to / by a
node-to-node match that results in the greatest improvement in the value of the global
functional. The location of an optimal global match can be accomplished in a number
of ways [2, 3, 5]; these alternatives include simulated annealing [2] and deterministic
annealing [3]. Rather then adopting one of these more elaborate optimisation schemes, we
will adopt a very simple deterministic MAP estimation approach to locate the best match.
This optimisation strategy has the dual advantages of accommodating the persistence of
observational information and being realisable by simple gradient ascent. The aim of
this decision scheme is to locate the matching configuration that has optimal a posteriori
probability (MAP) with respect to the available observations. In [5] we showed how a
criterion similar to that developed here but tailored to low-level labelling problems could
be used to model the joint prior in such a scheme. According to the MAP philosophy,
F(f) is used in the spirit of the joint prior. Observational evidence for matching affinity
between data node u G V\ and model node v £ V2 is captured by the single probability of
the relevant measurements, i.e. P(f(uk)\xk). The initial configuration of the relaxation
scheme is seeded on the basis of the maximum value of P(f(uk)\xk). Updated matches
are selected to optimise the following quantity which is proportional to the a posteriori
probability of the global matching configuration

P(f(uk)\xk)F(f) (7)

In order to ensure consistency of the final match we must exert control over the
parameter of the global criterion. This parameter is the probability of matching errors.
Since we expect the relaxation scheme to improve the accuracy of the labelling, one control
strategy is to reduce the matching-error probability to a small terminal value according to
some deterministic iteration dependant schedule. The error probability Pe may therefore
be regarded as a control variable, much in the spirit of the temperature in an annealing
schedule.
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4 Constraint Filtering

With these ingredients, the deterministic relaxation scheme iteratively improves the la-
belling and reduces the value of label error probability to locate the match of maximum
achievable consistency. However the final match may still retain a substantial number of
residual inconsistencies. As we mentioned before there are two sources of error hindering
the graph matching process. The matching errors modelled in Section 3 are eliminated by
optimisation, but residual inconsistencies persist in the form of the erroneous matching
of segments for which no feasible match exists. These are clearly undesirable in the final
match.

These mis-matched entities are the result of a matching model which does not incor-
porate a null match category, nor any of the modelling components associated with the
inclusion of unmatchable elements. This approach does however have certain tangible
benefits; we need not include the possibility of null-matched elements in the superclique
probabilities, nor do we require prior knowledge of the number of unmatchable elements
expected to be present in the data. The softening of relational constraints implied in equa-
tion 5 enables the matching process to accommodate these erroneously matched segments
while still locating the most consistent match. We therefore require a postprocessing step
which discards unmatchable elements to a null category. Formally, these unmatchable
nodes in graph G\ are accommodated by augmenting the node-set for model graph G2 by
the null-match label <j>.

Our philosophy throughout this paper has been to use a measure of consistency to
gauge the correctness of a match. We therefore propose a post-processing step to filter
out unmatchable elements which is based on a consistency measure. Clearly if the graphs
under match are uncorrupted, we would anticipate a final match which is completely
consistent over the whole graph. When data corruption and model uncertainty are present,
this potential area of consistency is broken up into smaller patches, the size of which
is limited by the process of constraint corruption. Unmatchable elements, on the other
hand, have no consistent interpretation and are therefore are unlikely to form patches of
consistency.

We commence by forming a new graph G'\ — (V{, E\) which contains the consistently
labelled portions of G\. To form G'\ we first eliminate arcs whose mapping does not
appear in G2

El' = {(uuu2)\(f(Ul),f(u2))£E2} (8)

We then remove disjoint nodes which are no longer connected by an arc; these nodes
have no support and are therefore considered to be unmatchable

Vl' = {u\(u,v)€E1',v£Vl} (9)

with the disjoint node being consigned to the null category, i.e.

« i V\ => /(«) = 4 (10)

The graph G\ now consists of a number of internally connected yet potentially
disjoint patches, in which all the nodes satisfy the arc consistency constraint. Suppose
that A,- denotes the index-set of one of these disjoint graph partitions. If there are p
such partitions, then V{ = (J?_, A; and there are Sg rconnecting edges, i.e if i ^ j
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then (A,- x Aj) n E[ = 0. If correct matching were the only process which generated
consistency, then G\ would contain only the correctly labelled portion of the graph.
However, a small amount of spurious consistency is generated from local isomorphism
between unmatchable segments and regions of Gi. Since the probability of accidentally
forming a partition of size |Aj| in the initial labelling is equal to Vf' we gauge the
overall consistency of each partition by the number of nodes contained within it. In
practical matching applications the regions of spurious consistency are small, typically
much smaller than correctly labelled regions, and in this case it is sufficient to reject those
regions whose size falls below some threshold value T

|A,- |<T=»VueA,-[/(u) = fl (11)

For example if we set the threshold level at T = 2, then we effectively assign all nodes
interconnected by a disjoint edge to the null category. For the experimental study reported
in section 5, it is this physically intuitive value that has been used. However, in other
applications it may be desirable to set the threshold so as to ensure that the probability of
accidental local isomorphism does not become unacceptably large.

5 Experiments

For the experimental aspects of this study we are interested in matching hedge structures
detected in SAR images of rural scenes against their representation in the form of digital
map data. An example image is shown in Figure 1 and the corresponding map data
is shown in the righthand image of Figure 3. As we mentioned in the introduction,
this is a complex task due to the segmentation problems posed by the raw data and
the unreliable nature of the ground-truth map information. Hedge structures present
themselves as intensity ridges of variable width in the SAR image. The raw intensity
data is both noisy and exhibits anisotropies associated with the directionality of the radar
used to sense the scene; the anticipated fidelity of feature detection may be expected to be
subject to orientation dependent systematics. For instance, inspection of Figure 1 reveals
shadowing associated with the directionality of the radar. At the cartographic level there
are discrepancies between map and data. Many of the linear hedge structures recorded in
the map data are absent from the SAR image while some genuine hedges are not mapped.
These problems are compounded by the fact that hedgerows are not recorded as a distinct
cartographic class in the digital map.

We commence the processing of the SAR data by applying a relaxation operator to
the raw image data to extract intensity ridges of good connectivity. The ridge extraction
process relies on refining the output of a pair of directional line detection filters using a
dictionary-based relaxation scheme [4]. Example ridge contours are shown in Figure 2.
The lefthand image of Figure 3 shows the linear segments extracted from the line contours.

The initial matches between the linear segments extracted from the SAR data and
their map representation are established on the basis of the angular affinity. The matching
probabilities are computed by considering the orientation difference between linear seg-
ments in data and model, 0U|/(U), using the known rotation needed to transform between
the scenes, 3>
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Figure 1: Raw SAR Image

Figure 2: Result of line detection

(12)

The mean rotation parameter may be adaptively determined to minimise a global error
criterion along the lines suggested in [11]. The angle variance a may be chosen to reflect
anticipated systematics in the estimation of line-orientation. Although there is clearly a
considerable body of information remaining untapped by our matching affinity model,
it must be stressed that this aspect of the matching process is not our prime concern in
this paper. Rather, our aim is to demonstrate how the discrete relaxation method can
improve the consistency of a very poor initial match using softened symbolic constraints.
In any case, since linear segments are invariably subject to fragmentation, the ability
to recover an acceptable match based purely upon orientation information may provide
certain operational advantages in terms of ease of control.

The experimental matching study is based on 90 linear segments in the SAR data
and 34 segments contained in the map. However only 18 of the SAR segments have
feasible matches within the map representation. Figure 3 illustrates the initial matching
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Figure 3: Initial unfiltered match

Figure 4: Final filtered match

configuration; the lines between the left and right halfs of the figure indicate matches
between the midpoints of the lines. The spatial pattern of matches displays a high degree
of randomness. In addition, certain linear segments in the map which are subject have
multiple matches in the SAR data. This second feature is largely a result of orientation
ambiguities among the line-segments. When the constraint filtering step is applied to this
initial configuration, only 3 correct matches are recoverable.

Application of the discrete relaxation method increases the number of correct matches
to 16 with 74 errors after 10 iterations. Beyond this point there is no further iterative
change in the matching configuration, in other words, the discrete relaxation process has
reached stable convergence. The number of matching errors is still substantial but by using
the constraint filtering technique described in Section 5, inconsistent matches are removed
producing the result shown in Figure 4. The final result contains all 16 correct matches and
only 3 residual errors. Moreover, the number of multiple matches is signficantly reduced;
only one of the errors falls into this category. In addition to improving the fidelity of
match the discrete relaxation scheme has also increased the level of relational consistency.
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6 Conclusions

We have described a symbolic approach to relational matching in machine vision. The
novelty of the method stems from its Bayesian modelling of relational consistency through
the use of an explicit constraint corruption process. Unlike many alternatives in the
literature, the method is not limited to the use of binary constraints; it can accommodate
N-ary relations of differing or varying order. In consequence of this assumed model the
consistency of match is gauged by a compound exponential function of the Hamming
distances between symbolic relations; there is a single exponential associated with each
potential relational mapping. It is this feature of our consistency measure that bestows
tangible performance benefits, rendering it more robust to errors and allowing it to operate
effectively in a large space of relational mappings. This robustness to inconsistency means
that the method may be operated without the need for an explicit null matching process.
Unmatchable entities are identified by a constraint filtering operation once the relaxation
scheme has converged.
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