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Abstract

It has been shown that relative projective shape, determined up to an un-
known projective transformation, with respect to 5 reference points can be
obtained from point-to-point correspondences of a pair of images; Affine
shape up to an unknown affine transformation with respect to 4 points can
be obtained from parallel projection. We show in this paper that afTine shape
with respect to 4 reference points can be obtained from two perspective im-
ages provided that the pair of images is affinely calibrated. By affine calibra-
tion, it means the establishment of a special plane collineation between two
image planes, this collineation is the product of two plane collineations each
of which establishes a (1,1) correspondence between an image plane and the
plane at infinity. Experimental results are also presented.

1 Introduction

Recent works [1, 4, 9] show that it is possible to get invariant projective shape
representation from a pair of non calibrated images, with the assumption that a
sufficient number of points are previously matched between images. These works
are originated from the pioneer work of Koenderink and Van Doom [5] on affine
shape representation from restricted camera projection, that is parallel projections
and other related works [13, 14, 8].

Affine shape reconstruction has been extensively studied for parallel projections
or so-called weak perspective projections [11, 13], there have been many attemps
to get affine shape from the full perspective images using point matches without
calibration, it is now clear that it is mathematically impossible. Especially in
[11], it has been shown that additional special reference points are needed to
get affine shape from perspective images. Sparr (cf. [13, 14]) reconstructs the
affine shape using available affine information of objects such as the rectangular
patches. Faugeras [1] dealt with the family of affine shapes. In this paper we
will argue and show that the affine shape is obtainable from a pair of images
using point-matches only provided that an affine calibration is furnished. Later in
Section 2, we will show that by affine calibration, we mean the establishment of
a special plane collineation between two image planes. Intuitively, in this affine
calibration step, naturally pure projective incidence property of point-to-point
correspondence is not enough, a kind of affine knowledge should be introduced,
for example, parallelism of lines. However Euclidean knowledge such as the exact
coordinates necessary for classical stereo calibration is no more necessary. So the
basic idea developped in this paper can be regarded as exploring the capabilities
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of partially calibrated stereo system, as without any calibration (however with on-
line point-to-point correspondences) of a stereo system, only invariant projective
shape, that is the shape denned up to an unknown collineation, is obtainable. In
particular, we will show what is necessary for getting the affine representation of
the shape, since affine shape often presents a good compromise bwteen projective
shape which is metrically too poor and Euclidean shape which is metrically rich
enough but difficult to obtain.

2 Affine calibration
We first show how different calibrations are related to different 3D reconstruction,
which allows us to introduce what it means for us by affine calibration.

Projective shape reconstruction is possible from a pair of images provided that
the epipolar geometry is established. This epipolar geometry is entirely determined
by fundamental matrix [2, 7] which can be considered as the projective version of
the familiar essential matrix [6] for motion analysis. Recall that fundamental
matrix is projectively a correlation between two image planes. A plane correlation
is a linear transformation which transforms points into lines and lines into points,
that is what the epipolar geometry does. The correlation is represented by a
matrix of 3 x 3 whose rank is of 2. Therefore the degrees of freedom are of
7 = 9—1—1. Since the determination of fundamental matrix needs no more
than the projective incidence properties, the determination of fundamental matrix
can be considered as projective calibration, it is also called weak calibration in
[12]. Naturally, from projective calibration, only relative projective shape which
is denned up to a projective transformation in space (a matrix of 4 x 4) can be
obtained [1, 4, 9, 3]. Needless to say that there is no hope to recover any other more
metric shape representation, since we have no this kind of metric information.

Naturally the classical calibration process needed to stereo vision can be con-
sidered as Euclidean calibration, since explicit Euclidean metric is required during
calibration step. Euclidean calibration of a stereo pair has 22 = 2 x (3 x 4 - 1)
degrees of freedom.

By affine calibration is meant that besides of projective calibration, some affine
information should somehow introduced. Therefore this so called affine calibration
for a stereo should turn out the corresponding affine shape representation. That
is, the shape is defined up to an affine transformation in space. And an affine
transformation is a linear transformation which leaves the plane at infinity invari-
ant. Affine transformations constitute a subgroup of the projective group, the
general linear group. Obviously, we should have something to do with the plane
at infinity, more precisely, the plane at infinity should be somehow observable in
image planes. The points on the plane at infinity represent the directions of family
of parallel lines in the affine space. As we known that these points at infinity are
perspectively projected on to image plane as normal points known as vanishing
points associated to parallel lines in space. Three points at infinity define the
plane at infinity, therefore intuitively three vanishing points should be enough.

More concretely, our affine calibration needs the knowledge of the parallelism,
however we do not need any further Euclidean information such as Euclidean
coordinates of points or the distance between two parallel lines, only the pure affine
information, parallelism is taken into account. The detection of vanishing points
can be implemented as that described in [10]. Thus three vanishing points should
be detected in the affine calibration step. This coincides with what it is pointed
out in [1] that with the epipolar geometry, affine shape reconstruction has still
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3 = 22 — 12 — 7 degrees of freedom, since each vanishing point fixes one remaining
degree of freedom, three fix entirely the unique affine shape representation.

Some algebraic consideration can be studied as follows. Each camera's projec-
tion matrix is of form (Pi pi), where Pi is its non singular 3 x 3 submatrix for
perspective projection, p,- is a 3 x 1 vector. The point at infinity of each direction
in space doo (a 3D vector) has homogenious coordinates (doo 0)T, its projection,

vanishing point, in the two images Vi = (Pi pi) I 5° ) = P,doo,

therefore P{ can be considered as a plane collineation between image plane

and the plane at infinity. Then V2 = P2P\lv\ — Av\, which is still a plane
collineation between two image planes. Three vanishing points are not yet enough
to determine A. However, as the epipolar geometry of the pair is known, i.e. th
eipoles are known and it is important to note that obviously e^ — At\. That
totalizes 4 points to determine a unique A up to a scaling factor.

It leads to that Afjine calibration is, in addition to the determination of funda-
mental matrix, the establishment of a special plane collineation between two image
planes, this collineation is the product of two plane collineations each of which es-
tablishes a (1,1) correspondence between an image plane and the plane at infinity.
Algebraically it is equivalent to have determined globally P2P{'1, Pi is the 3 x 3
non sigular submatrix of projection matrix.

PiPy1 can be determined with at least 3 vanishing points correspondence
provided the fundamental matrix.

3 Affine shape reconstruction

Relative affine shape representation

From any four distinct points, say O, X, Y and Z which are neither coplanar
nor three of them collinear, we can construct a unique affine frame and assign
the coordinates representations (0, 0, 0)T , (1, 0,1)T, (0,1,1)T and (1,1,1)T to these
reference points, then any fifth, say P and all other points can be assigned the
unique affine coordinates (a,/3,f)T, these affine coordinates constitute the affine
shape representation of these points with respect to the first 4 reference points,
Obviously, the affine shape is only defined up to an unknown affine transformation.

The geometric way to define (a,/3,j) is as follows. Any point P is projected
onto the planes OXY, OYZ and OXZ along the directions of OZ, OX and OY
axes (see Figure 1). The projection points are respectively denoted by Pxy,Pyl

and Pxz. Then in each plane, say the plane OXY, project Pxy onto the lines OX
and OY along the direction of OY and OX. These projection points are denoted
by Px,Py. In the same way, we can get P2. Thus (a,/?,7) are defined by position
ratios

OPX OPy OP,
a= P and 1

However, in our context, these spatial measures are not available. We have
access only to perspective image measures. Thus the shape should be reconstructed
by means of invariants. As we are considering the perspective projections, the basic
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Figure 1: Affine coordinates in space.

invariant is the cross ratio1. However the basic affine invariant is the position ratio.
In order to get affine representation from projective projections, the following
property of cross ratio establishes the transition between cross ratios and position
ratios via the point at infinity.

/ / one of the points of the projective line is perspectively mapped to the point
at infinity on an affine line, the projective coordinate defined by cross ratio equals
to the affine coordinate defined by position ratio, that is,

In the following, uppercase letters denote the points in space, image points
are denoted by lowercase letters subscripted by the number corresponding to the
image number. For instance, a point in space P is projected onto the first image
plane as pi and onto the second one as P2-

Viewing line reference plane intersection

Given 4 points, take 3 of them as a reference plane, examine the relative position
of the fourth corresponding point with respect to this reference plane. It has been
firstly proved in [9] that a necessary and sufficient condition for 4 points to be
coplanar in space can be established from the epipolar geometry. We present a
variant of this condition in a more constructive way, that is we determine in one
image the intersection point of the viewing line of another image with the reference
plane. Algebraically, this operation can be simply determined like follows. With
the similar reasoning as in affine calibration step, a plane collineation between
two image planes can be specified with 3 points which define the reference plane
provided the epipolar geometry. This collineation is the product of collineations
between image plane and the unknown reference plane in space. If B denotes this
plane collineation, given a point p\ in the first image, the intersection point of the
viewing line of p\ with the reference plane is located simply at p'% = Bpi in the
second image. It is evident that if p'2 is superimposed with p2> then it means that
the fourth point is coplanar with the reference plane.

1 The cross ratio of the 4 numbers is defined as

(a - c)/(o - d)
{a,b;c,d} =(b - c)/(b - d)
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Line reference plane intersection

Another essential operation for geometric reconstruction is to be able to realize a
general line and reference plane intersection. It has been proposed in [11], called
the piercing point, in which it is limited to the reference plane, referenced by 4
coplanar points. Thanks to the epipolar geometry, the same operation goes for any
reference plane referenced by any three points, since the epipoles provide always
the necessary fourth point. Algebraically, l2 = (B'1)7^, where (B~1)T is the
dual transformation of B, then the intersection point is p = l2 x V2.

Intersection with the plane at infinity

First, we should determine the projection of the points at infinity along three affine
axes specified by reference points. Obviously these points are just the intersection
points of the plane at infinity with the affine frame axis. These intersection points
can be easily located by using the previous line plane intersection operation. If A
still denotes the plane collineation of affine calibration,

*oo2 = (»2 X X2) X ((A~1)T(o1 X Xi))

Similar expressions hold for 3/002 and 2^2. Inverse the image number, we can
get Zooi, «/ooi and

Reconstruction on the reference planes

Then, given a pair of corresponding image points pi and p2, to parallelly project a
point along a reference axis in space is equivalent to drawing a line going through
the corresponding vanishing point of the axis in the image. So the projection of a
given point along the affine axis can be realized in the image plane. For example
for the point Pxy, we obtain

Pxy2 — (P2 X £002) X ((A~1)T(pi X Xool))

Therefore all these reconstructed points in the second image plane are the
perspective view of the points on the reference plane OXY, i.e. a non singular
plane collineation exists between the reference plane OXY and the image plane
used for reconstruction. In fact, we are considering the subordinate projective
geometry of dimension 2 between the reference plane OXY and the image plane.
The similar operations hold for other reference planes such as OXZ and OYZ.

Affine rectification from projective plane

Now considering the subordinate plane geometry on the reference plane, this pro-
jectively deformed planar shape can be rectified into its real affine shape by a
planar collineation defined by O, X, Y and E. E is the intersection point of
XYoo and YX^,. That is to find the 3 x 3 plane collineation Axy which trans-
forms o2, x2,2/2 and e2 — (x2 x j/002) x (y2 x Z002) into the unique canonical affine
coordinates representation

Axy : o 2 -^ (0 ,0 ,0 ) T , j :2^ ( l ,0 ) l ) T , j /2 -* (0 , l > l ) T
I e 2 - . ( l , l , l ) T

Thus, if (xi,x2,x3)
T = Axypxy, then the affine sub coordinates (a,/?)T =

(f^' f i ) T - While considering another subordinate plane geometry on the refer-
ence plane OXZ, we get (a,7)T . These lead to (a, (3, y)T.
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4 Experimental results

We have firstly experimented on the simulated glass data to validate the method.
The fundamental matrix between the pair of images is determined based on a
nonlinear optimization algorithm. Then, a simulated cube is put in the scene to
perform affine calibration.

Figure 2 shows one of the original simulated image.

Figure 2: One of the original simulated image

Different reconstruction steps of a subordinate shape are illustrated by Figure 3.

Figure 3: The projective and affine subcordinate shape on the reference plane
OXZ.

Figure 4 shows the different views of the 3D reconstructed affine shape.
The real image data set is obtained from a regular pattern. Thanks to the

regularity of the pattern, it makes possible the matching of the points. Since
only one planar pattern is available, we create a kind of "transparent" spatial
pattern, that is, once the camera is fixed in a position, the pattern plane is then
translated. This is equivalent to have several transparent regular pattern. In this
experimentation, we used 3 transparent planes and 2 positions to simulate a stereo
pair. The affine calibration is based on the location of the vanishing points of the
bounding box of the spatial pattern. Figure 5 shows one of the original images.
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Figure 4: Two views of the 3D affine reconstructed shape.

# 1

Figure 5: One of the pattern images.
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Figure 6 shows two views of the reconstructed 3 planes pattern.
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Figure 6: Two views of the 3D affine reconstructed 3 planes pattern.

While selecting different reference points, the different affine reconstructions
are obtained and are superimposed in Figure 7, which illustrates that the afhne
shape reconstruction is defined up to an unknown affine transformation.

Figure 7: Three superimposed affine shape with different reference points.

5 Conclusion
There have been many attempts to obtain affine shape representation from a pair
of projective images, it is clear that it is not possible without an affine calibration



667

step. So this paper just provides what is needed to get the real affine shape. The
results presented in this paper is not contradictory with the affine reconstruction
from the epipolar geometry described in [1], since the affine shape obtained in [1]
is not uniquely determined, it is a three-parameter family affine reconstruction,
that is up to 3 independent parameters apart from an unknown affine transforma-
tion. The introduction of affine calibration step makes the solutions down to be a
unique one. Therefore, we clearly indicate one of the possible ways to fix the three
independent parameters which define the family of affine solutions.

The method presented here covers also the affine reconstruction from parallel
projections, in this case the assumption of parallel projection provides what is
needed for affine calibration.

Another practical point is that the relative shape reconstruction is directly
located in the visible range of image plane, makes the solution more stable in some
sens more relative than directly going through the canonical basis and singular
cases are even more easily detected.
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