
649

Motion Correspondence Using a Neural Network

G. H. Sarigianidis1 and D. Pycock

School of Electrical and Electronic Engineering
The University of Birmingham

E-mail:sarigiag@eee.bham.ac.uk
Abstract

Identifying corresponding features in an image sequence is an important issue in
motion analysis. We present a solution based on the assumption of smooth motion
using point features. Local constraints are used to make the method robust against
occlusion and imperfect feature extraction. A global cost function is defined which
is minimised by a mapping of feature points onto a 2-D Hopfield neural network.
Three variants of the Hopfield network model are considered. Results obtained
using synthetic and natural image data show that this method is robust against
occlusion and poor feature detection.

1 Introduction
Time-varying images may result from camera motion, the motion of objects in the
scene and variations in scene illumination. The changes produced provide a rich
set of cues for understanding a scene, its structure, and the motion of the objects in
the image. The goals of dynamic scene analysis are motion estimation and object
structure recovery. Applications include the detection, recognition and tracking of
moving objects, robotic vision and motion-compensated coding.

There are two principal approaches to dynamic scene analysis: pixel-based and
feature-based methods. In a pixel-based method the displacement of each pixel in
the image is estimated from local image intensity changes, as in optical flow[l].
This method is usually used when the displacement field is small. Feature-based
methods involve three steps. First, a set of relatively sparse, but highly descriptive,
features are located in each frame. Next, corresponding features in two successive
frames are identified {correspondence problem). Finally, the motion parameters
and object structure are derived from the correspondences found. In this paper we
present a method for solving the correspondence problem.

The purpose of a motion correspondence method[l][2][12][14] is to match a set
of identifiable physical features (such as points, edges or regions) over a frame
sequence. In the most popular methods groupings of image features are used with
domain and feature related constraints (e.g. rigidity, smoothness of motion, or
common motion constraints) to guide matching. These approaches can be divided
into those based on matching isolated features and those based on finding a global
match for all the features. The first approach uses similarity measures such as
intensity statistics[l] and average computed speed[2] to find a match for each
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feature. Its major disadvantage is that a feature in one frame may match to several
in the next. The second approach finds the optimal global match between features
in two consecutive frames. All possible combinations of potential matches are
constructed. A cost function is defined based on the smoothness of motion[12][14]
or the rigidity of the feature sets under motion[15]. The objective of the method is
to find the minimum-cost combination of feature matches.

This paper describes an extension of global feature matching to incorporate
smoothness of motion constraints in the form of a maximum change in the position
and velocity of feature points between frames. The robustness of the matching is
enhanced by a concept of hypothetical feature points. The correspondence problem
is formulated as the minimisation of a cost function by a Hopfield-Tank network
model[4].

The Hopfield neural network model
The Hopfield network is a recurrent, one-layer network constructed by inter-

connecting a large number of neurons. Each neuron is described by its current
state ut and output V,; u, and V; are usually related through a monotonic increasing
output function V; =#(«,). A non-linear g(ui) limits possible values of Vt to the range
-1 to +1 or 0 to 1. It is frequently a step or a sigmoid function. The output of each
neuron i is fed to the input of every other neuron ; with a connection strength Ttj.
Each neuron has an offset bias i* associated with each input. The state u4- of
neuron i is updated as a function of the total input to that neuron.

In the discrete version[5] g(Uj) is a step function and the state of a neuron at
time f+1 is related to output of the other neurons at time t by:

The stable states of the network[5] are associated with the local minima of the
Liapunov function:

In the continuous version the dynamics of the network are given by:

%^lW+S 3(a) *W= * 3(b)
* 1+exp(X

The continuous network has stable states[4][6] which are local minima of the
Liapunov function:

^ i j*i i

In equation (3b) large values of X increase the ability of the network to reach a
global minimum but produce a poorly differentiated output. Low values of X
produce a well differentiated output but the performance becomes similar to that of
the discrete version. Gain annealing is an adaptation of the continuous Hopfield
model in which X is decreased in successive iterations. Therefore the network has
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both an enhanced ability to find a global minimum and provides a well
differentiated output. A logarithmic cooling scheme guarantees convergence of a
network[4].

The Hopfield network has been proposed as an optimisation machine for
solving problems expressible as constrained minimisation of a cost function[4]:

E°°sl =-!XX7TKV.-Xr^ {V, €{0,1}) (5)

This cost function is related to the Liapunov function of a network (as in either
(2) or (4) with x -> °°). The Hopfield network has been successful in many
applications[4][9][ll][16]. Zhu et al. [16] present a Hopfield network to find
corresponding points in two 3-D synthetic images with the constraint of rigidity
and points that are all from one object.

A new application of the Hopfield network for establishing motion
correspondence in 2-D projections from 3-D scenes is presented here. Multiple
objects are admitted in the analysis with the constraint of smooth motion.

2 Motion Correspondence
A motion correspondence method selects and extracts a set of image features and
the establishes feature correspondence in successive frames. Corners are good
features for motion correspondence because they are small and located in areas of
high image intensity variance. Most existing corner detectors fail to produce a
consistent set of features[13] because of occlusion, poor lighting and object
motion. Rather than trying to identify a perfect corner detector the simple corner
detector proposed by Harris and Stephens[3] has been used. We have sought to
accommodate its limitations in the design of a matching procedure.

Feature correspondence
The smoothness of motion assumption first introduced by Jenkin [9] for motion
stereo is used by Rangarajan and Shah [12] and Sethi and Jain[14] for monocular
images. Jenkin argued that the 3-D location of a given point and its velocity vector
from frame to frame remain relatively unchanged. Thus it is reasonable to assume
that any physical object (rigid and non-rigid) follows a smooth trajectory and
covers a small distance in the time between frames.

In a sequence of m frames, f\f2,---,fm (where / ' consists of a set of feature
points), the ith point of frame t is represented by if, the vector of its two-
dimensional co-ordinates. It is assumed that the trajectory of any point in the
stationary image plane is smooth[13]. Therefore, considering three frames at a
time, correspondences can be found by minimising the displacement and velocity
change that a mapping of potential matches produces. This can be achieved using
a function whose value is related to the change in velocity and displacement of a
point in two successive frames.

In practice the number of feature points can change from frame to frame due to
occlusion or poor feature extraction. Even when the same number of points are
identified in each frame they do not necessarily represent the same set of features.
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Consequently it is important to allow for the possibility of obtaining incomplete
trajectories. Constraints which limit local change in velocity and displacement
prevent inappropriate correspondences being identified and help to maintain the
smoothness of any trajectory found. A more realistic formulation of the problem is
to seek the maximal set of complete or partially complete trajectories that
minimises the sum of local velocity changes and displacements. The constraints
applied are that the local velocity change for a point does not exceed some value
a^ and the displacement of any point between two successive frames is less than
some value dmax. Local constraints limit the acceptable location of a feature point,
given its location in the two previous frames.

Hypothetical points are introduced in the establishment of correspondence to
accommodate incomplete trajectories. Frame to frame correspondences are
computed using the displacement function:

A( pi p'+i) _ j Ki'^'m ifboth points are true feature points (f-\
a \ l l ' ^ ( i ) / ~ } » I' W

dm^ otherwise
where X*X*+1 represents a vector from point i in frame k to point ; in frame k+l,

| x | | denotes the magnitude of vector X and $(i) is the point to which i is mapped in

the frame k+l under the mapping <|>. This displacement function constrains

hypothetical points to displacement d^. Changes in local velocity are computed

using:

J P < - I p< pt-n) - I F T ' PL-->,; - pi '•(O if all points are true feature points ,~&\ri > v-i(o' r*(<)/~ I" " . . ^''
[ainax otherwise

where OtA(i) is the point in frame t corresponding to feature point i in frame t-1.
This function constrains hypothetical points to velocity change a ^ . Thus the
introduction of hypothetical points in the preceding or subsequent frame is
discouraged. The domain of functions d(), a()is [0,+°°). Two functions glQ and
g2() are defined to map d() and a() into the domain (-1,1). This is achieved using
functions of the form:

/ W 1 ( 8 )

where x is dQ or a() and 0 is d^ or aTna for gl() and g2Q respectively.

The following net cost function, g(), is proposed:

( ) ( ) ( " 1 P' P'+l) (9)

The likelihood for each isomorphic mapping <j> between feature points in frames
/ l a n d / t + 1 i s :

Given three frames / ' ', / 'and / '+1 with known correspondence Otl, where the
number of feature points in frames / 'and / '+1 is Nt and N2 respectively, the
procedure to establish motion correspondence is defined in Figure 1.
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Step 1: If N1 > N2 add to frame / ' + 1 N2-Nl hypothetical points.

If N1 < N2 add to frames / ' " ' and / ' N{ -N2 hypothetical points.
Step 2: Determine the correspondence O l using :

( ) (<> \f"\ / ' , /'+1)

where O is the space of all isomorphic mappings.
Step 3: Verify that the correspondences established by O l comply with the

displacement and velocity change constraints, using the rule:
T r u e c o r r e c t m a t c h

(o/s"max a n o f l ^ 'V-1(o'^(o/Sfl«nax->|False incorrect match

Figure 1. Algorithm for motion correspondence

Feature points having incorrect correspondences together with those that match
with hypothetical points are declared as feature points without correspondences. In
the first two frames of a sequence correspondences are established by using
displacement information only and setting velocity changes to the maximum value
amax f° r a11 feature points.
Hopfield neural network solution
To find the correspondences, 0 ' in Step 2, a global cost function incorporating
each constraint is formed, such that non-isomorphic mappings are penalised, and
mappings which minimise (10) are favoured.

Denote by pik a match between the ith feature point in frame / ' and the kth
feature point in the frame / '+1 . Let pik be 1 if the two features are matched under a
mapping (|> and 0 otherwise. Motion correspondence can be determined by
minimising the cost function:

N ( N V N

i=l 4=1 l*k i=\ 4=1 j*i
N N N N

j=l J=l J.I (=1

The terms associated with A, B and C in the above equation penalise mappings
between feature points in the two frames that are not isomorphic. The term
associated with A is zero if a feature point of / ' matches with only one feature
point of / '+1, otherwise a penalty is imposed in E. Similarly, the term associated
with B is zero if a feature point of / '+1 matches with only one feature point of / ' .
The term associated with C reinforces the uniqueness constraint that each feature
point in one frame can match with only one feature point in the other. Finally, the
term associated with D represents the degree of smoothness of the trajectories
established with a match between a pair of points (y) in / 'and a pair of points
(k,l) in / '+1 . The smoothness measure, c^,, takes account of both the displacement
and velocity changes:

c =—\g(p'-[ p' P'+l)+g(p'~[ P' P'+i
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The domain of the smoothness measure is (-1, g inaj. The value of this measure
varies smoothly between +gmax, which indicates correct matches for the two feature
point pairs (i,k) and (j,l), to asymptotically approach -1 when both feature point
pairs do not match.

A two-dimensional Hopfield network minimises the cost function (13) and
thereby finds the correspondence between the feature points in frames / ' and f'+l.
The network is an NxN array of neurons, where N is the number of feature points
in each frame. The rows of the network represent the feature points in / ' and the
columns the feature points in f+l. The 'on' state of each neuron represents a
match between a feature point in / ' and one in f'*\ The cost function is
equivalent to the Lyapunov function of a Hopfield network (2)[13] with unit states
o f vth = Ptk ̂ d vji = Pji> ^ d an i n P u t t 0 e a c n unit> 4 = 2 C The connection
weight between two units is defined as:

4;, =[Dc. , - A8,(l-8B)-B8B( l-8y)-c(8g+8j] (15)

where 8̂  is the Kronecker delta. The connections Tm are symmetric that is;
T*ji = TjuiL m& the self-feedback Tmk to each unit is zero. The output Vik,of each
unit, represents the degree of match between the feature point * of frame / ' and the
feature point k of frame / /+1.

3 Results
Results are presented for experiments on synthetic and natural images. Assorted
motions and multiple frames are considered. Two criteria are used as measures of
efficiency. The first, Incorrect Correspondence Ratio(ICR), is defined as:

total number of incorrect correspondence .,,.
1L.K = x 1UU % (to)

total number of correspondence
The second is the distortion measure proposed in[12]. The trajectory set

established by various methods over the same data may have a similar cost and
ICR without being identical. The distortion measure indicates the amount of
deviation of a trajectory set from the true trajectory. It is defined as the Euclidean
distance between the point and that of the true trajectory. The distortion measure
for a trajectory set is the sum of the distortion measure of each trajectory point.

Three variants of the Hopfield network, the discrete, the continuous, and the
continuous with gain annealing, have been considered with respect to synthetic
image data and their performance compared with that of the Rangarajan and Shah
method[12]. For natural images, results were obtained using the gain annealing
Hopfield network. The cost function parameters in (13) were A=B=5, C=1.5 and
D=0.8. The local maximum displacement and change in velocity parameters were

Synthetic image data
In the first experiment ten frames of synthetic objects with 5,10,15,25, and 30

corners were generated. In each case the objects in the first frame sequence were
translated only while in the second frame sequence they were translated, rotated
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and scaled. In all experiments the corners were identified manually and there was
no occlusion. Each frame of a sequence contains the same number of feature
points. To make the sequence more realistic the co-ordinates of each feature point
were randomly perturbed by ±5 %. The results of applying each model and the
Rangarajan and Shah method are shown in Figure 2 where the problem size
represents the number of corners in each frame. The gain annealing outperforms
both the other implementations and the Rangarajan and Shah method. This results
from the enhanced optimisation achieved by the use of an annealing schedule. The
performance of the continuous model is almost the same as that of the Rangarajan
and Shah method while the performance of the discrete model is the poorest.

I

8
10 15 20

N problem size

30

Figure 2. The performance of the proposed method using Discrete (DHM), Continuous (CHM),
and Gain annealing (GAN) Hopfield Model and the performance of the Rangarajan and Shah
method (RSM).

To investigate the behaviour of the method described in this paper further a
comparison was made using the synthetic data of four points in five frames shown
in Figure 3[ 12].
141 1 14T

12

0 5 10 15 20 0 5 10 15
(a) (b)

Figure 3. Synthetic sequence: (a) Minimum trajectory set for Neural network method,
(b) Minimum trajectory set for the Rangarajan and Shah method.
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Each point in Figure 3 is marked with a number corresponding to the frame in
which this point appears. The trajectories are shown by lines in Figures 3(a) and
(b). Figures 3(a) and (b) show the trajectory set found by the proposed method and
the Rangarajan and Shah method respectively. The proposed method finds the
optimum trajectory set (the same found by an exhaustive search) while Rangarajan
and Shah method finds a trajectory set in which the wrong corresponding points are
assigned to trajectories b and d in the third frame. The distortion measure of the
optimum trajectory set found by the proposed method is 0, for the optimal
trajectory set found by the Rahgarajan and Shah method it is 2 and for the optimal
trajectory set found by Setchi and Jain method it is 12 [12].

Natural image data
In this section the results of applying the method in two frame sequences are

reported. In the tools 1 sequence, shown in Figure 4, the motion of three
engineering tools in a six frame sequence is considered. The tools are a tap, a
wrench and a clamp. In this sequence the tap is rotated while the two other tools
are translated. Although there is no occlusion in the sequence the number of
feature points detected in the six frames is 15, 14, 15, 13, 17, and 12. This is an
effect of non-i I il illuminiti n

Frame 1 Frame 3 Frame 5
Figure 4. Tools 1 sequence. The identified corners in each frame are superimposed.

The second example is an eight frame sequence of the engineering tools where
all the tools are translated in different directions as illustrated in Figure 5. The tap
and the engineering clamp approach each other, cause occlusion (in frames 4,5,6,7)
then move apart. Some feature points appear in some frames and disappear in
subsequent frames due to poor feature detection. As a result the number of corners
in each of the eight frames is 15, 12, 12, 11, 11, 11 and 15. Although in some
frames the number of corners does not change, the points detected do not always
represent the same set ofphvsical points

Frame 1 Frame 3 Frame 5 Frame 7
Figure 5. Tools 2 sequence. The identified corners in each frame are superimposed.
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Figure 6(a) shows the trajectories obtained for the Tools 1 sequence. Nine
corner points are present throughout the sequence yielding nine complete
trajectories. Seven incomplete trajectories have been established which are the
result of poor feature point detection. Finally, there are six points that appear only
once in the frame sequence (one in frame 1, one in frame 4 and four in frame 5).

Figure 6(b) shows the established trajectories for the Tools 2 sequence. There
are two complete trajectories for two points that appear in all the frames of this
sequence and twenty one incomplete trajectories, due to either occlusion or poor
feature detection. Fifteen points appear in one frame only. The results of the
above experiments were verified visually and the ICR of 3.8 and 5.7 were found
for the Tools 1 and the Tools 2 sequences respectively. The overall performance
as measured by ICR is high even for the Tools 2 sequence affected heavily by
occlusion.

n so n
Horizontal Displacement(Pixels)

n
no n

*

1

1 «3

1

SO 90
Horizontal Displacement(Pixels)

(a) (b)
Figure 6. (a) Trajectories obtained for the Tools 1 sequence. (b)Trajectories established for the
Tools 2 sequence. Points without correspondences are marked by *.

4 Conclusions
In this paper, motion correspondence has been formulated as optimisation of a
global cost function using a smoothness of motion constraint to establish
correspondence. Local limitations on the allowable displacement and change in
velocity make the method robust against occlusion and poor feature detection. The
cost function is mapped to a Hopfield neural network for minimisation. Three
variants of the Hopfield network have been implemented and compared; the
discrete, the continuous and the gain annealing versions. The gain annealing
version has been demonstrated to perform better than the other two and the
continuous version has been shown to perform better than the discrete version. The
advantages of using the Hopfield model for motion correspondence are high
accuracy, ease of use and potential for parallel implementation.

Future work should investigate the performance of this approach in situations
which do not comply with the smoothness of motion assumption. In such cases it
may be advantageous to include information about the spatial arrangement of
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feature points in different frames. Such information will give rise to a non-
quadratic cost function and the need to use higher-order Hopfield network models.
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