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Abstract

Matching is recognized as the most difficult step in stereo vision. Many
algorithms have been proposed but none of them is robust enough. The
primary reason for this is that one of the most useful cues, namely shape
similarity, is not appropriately exploited. Making full use of shape similar-
ity for disambiguation requires determining an appropriate criterion and an
adequate implementation. We show that a disparity gradient (DG) limit as
small as 0.2 can be used to ensure shape similarity and permits the majority
of scene surfaces to be correctly handled. This DG limit is a compromise
between the quantity of matches and the quality of matching. The imple-
mentation of a DG limit is made effective by explicitly taking into account
uncertainty in image point positions. A very effcient voting scheme is pro-
posed. Many tests have been performed, mostly on complex real scenes, but
none of the parameters has been adjusted. The results are satisfactory both
in terms of the quantity of matches and the correctness of these in normal
circumstances.

1 Motivation
In stereo, the correspondence problem is recognized as the critical and the most dif-
ficult step[2, 3]. Much effort has been spent on this problem during the past decade
and numerous matching algorithms proposed[3, 6]. These algorithms present a
great diversity involving the input data, the computational scheme, and the way
that available constraints are exploited. However there is still room for improve-
ment, in particular in robustness, a key performance of vision algorithms.

We believe that effective use of available information is crucial for designing
a good matching algorithm. In fact, it is not unusual to see that an algorithm
fails to match or yields false matches at locations where available information
should allow good matching. In particular, shape similarity is not fully exploited,
whereas both by intuition and from a information point of view shape similarity
is one of the most discriminating cue. However, in order to take advantage of
shape similarity, one must first of all know how to express it, how to measure it,
and how to take into account noise and geometric distortion in data. Therefore, in
this paper we focus our effort on answering these questions, based on which a very
simple contour-based matching scheme is proposed. Instead of simply describing
the algorithm and simplistic analysis, as is ususally the case in the literature, we
will give full justification on the various choices during the design.

Performance evaluation is a difficult task in vision because of lack of ground
truth. We adopt a visual method using matched contours and 3-D views of the
reconstructed scenes (if the imaging system is calibrated). In total, more than
50 stereo pairs were processed among which many are complex outdoor scenes.
The results are quite good in terms of the percentage of matched points and the
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quality of matches. But the most important point is that no adjustment has been
necessary.

2 Generalities of 2-D Matching
Matching is a search. It can be carried out using constraints. In 2-D matching,
constraints are local similarity, continuity, uniqueness, ordering, etc.. For stereo,
the epipolar constraint is also generally available.

Local properties, or features, involve typically graylevel values, edge strength,
edge orientation, etc. These do not contain sufficient information for matching,
because of various noises and geometric distortion. However, local similarity alone
can only be used to select candidate matches in order reduce the search space.
More global constraints governing the consistency between matches can be applied
for disambiguation.

In the above, matching has been cast into a two-step process, in which local
and global constraints are applied separately. An alternative to this is to exploit
constraints in a combined way, implicitly or explicitly. Typically, local similarity
and continuity constraints are combined, as in most correlation methods. Con-
ceptually such methods need segmentation to ensure that the involved primitives
in each of the images result from a same 3-D surface. Ignoring this leads without
surprise to deficiencies at occluding boundaries, as with correlation methods.

As pointed out by Marr[10], p. 115, available matching constraints are, mathe-
matically speaking, only necessary, but not sufficient conditions. In fact, match-
ing is a underconstrained problem, no matter how we combine the constraints[19].
Repetitive patterns represent a pertinent example. In such a context, a compro-
mise between number of matches and the quality of matching is inevitable.

3 Using Shape Similarity for Disambiguation
We cnsider matching points of contours. Every contour conveys shape specifque
information. Shape similarity is used here for matching but this does not imply
that the shape of each contour should be explicitly characterized. Shape similarity
between corresponding contours is reflected in the continuous variation of disparity
along the contours and this variation lies within a limit, which is independent

of the shape of the contours. On
the contrary, two contours do not have
these properties if they do not corre-
spond and/or are not similar in shape.
In other words, good matches are nor-
mally consistent (or support) each other
in terms of disparity continuity and vari-
ation, whereas bad ones do not, or at
least not always so. This fact consis-
tutes the basis of voting scheme for dis-
ambiguation.

Figure 1. Voting is robust with respect
to data imperfections.

One of the advantages of this scheme is that it is robust with respect to data
imperfections, namely missing corresponding points or different configurations of
corresponding edge points at junctions, as illustrated in Fig.l. Unless there exist
other contours of similar shape for C\ in Image 2 (repetitive pattern), the number
of votes of a good match of any point on C\ receive will be always largely superior
to that of a bad match, although it may be smaller than in the ideal case.

3.1 Determining a shape similarity (continuity) criterion
For a parallel stereo system, if the normal of any 3-D surface is assumed to follow
a uniform distribution, an approximate probability density function (PDF) of DG
can be derived[l, 17, 13]. The resulting cumulative probability for a given DG
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limit DGQ is then:
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where z = z/B is what we call rela-
tive depth, with B denoting the baseline
length of stereo system and z the depth.
It is drawn in Fig.2. It shows that, for
a given DG limit, this probability in-
creases rapidly toward 1.0. This means
the further away the scene surfaces are,
the wider the range of surfaces (in terms
of slant and tilt) the given DG limit al-
lows us to deal with. For DGQ — 0.2,
at z = 5, more than 70% of surfaces
can be dealt with. This percentage is
as high as 91% at the same depth given
DG0 = 0.5.

At this stage, to choose an appro-
priate DG limit, a compromise must be
made between the quantity of matches
and the reliability of matching. If z = 5 is considered as the minimal depth of
these, which is equivalent to 2m for B = 40cm, and less than 30% of them lie at
z < 5, then more than 90% of the total scene points of interest will be correctly
dealt with with DGQ = 0.2. This DG limit is appropriate in the sense that it
offers a good disambiguation power and at the same time allows to deal with the
majority of surfaces in a scene.

3.2 Implementation issues
Now we discuss some implementation problems1, which are not less important
than theoretical ones!

Figure 2. The cumulative
on a DG limit.

probability

3.2.1 Applying DG limit

Imposing a DG limit DGQ is equivalent to imposing a maximum disparity differ-
ence Adispo(Adist). That is

Adisp < Adispo = DGQ • Adist. (2)

We preferred this form to DG < DGo for two reasons. First, it is more efficient:
a division is replaced by a multiplication; allowable disparity difference can be
calculated and stored in a look-up table. Second and more importantly, the noise
which is present in an image point position due to the discretization in image
formation and dislocation in edge detection can be appropriately coped with by
adding a constant term Ad to Adisp0 (see (2)), which is usually in the order of 1
or 2 pixels.

'For details of the implementation, see [9].
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3.2.2 Reinforcing the shape similarity constraint

Most algorithms such as [15] [16] which make use of DG limit weight the support
(or vote) by the inverse of distance. Their argument was that when Adispo(Adist)
increases, false matches may also get maximal global support by chance. Thus the
possibility of choosing false match matches increases, especially when the chosen
DG limit is large (> 0.5). However weighting support has an undesirable effect:
the disambiguating power of shape similarity is attenuated.

To avoid this, the solution consists in using a small DG limit as far as this
is possible. In our case, as discussed above, a DG limit of 0.2 is used. Further,
zero disparity difference is favored over non-zero ones. We simply double the vote
(termed as support below) of candidates inducing zero disparity difference.

3.2.3 Support collection

Suppose we have a contour C composed of L ordered points: C — {pi,i = l . - i},
each point having a list of candidate matches: Aii = {cij,j = l-.n^]}, where Tij
the number of candidates of the tth point pi. Thus the total amount of support
Cij receives, we call it score, is defined as follows:

Score (cij) — \ J max{Support (cij\cki),Cki € Aik} (3)

where A/"(p») denotes p;'s neighborhood and Support (cij\cki) the support c^ re-
ceives from Cfcj of pfc.

Eq. (3) is similar to PMF[14]. Two radical differences are to be noted. The
first one is already discussed, namely, support is not weighted here. The second is
that local similarity measures (edge norm and orientation), which have been used
to select candidate matches, do not take part in the score. In fact, because of the
presence of noise, we should no more discriminate selected candidates.

A large neighborhood A'' allows a good use of shape similarity and it should
be as large as possible. However this also increases the computational cost con-
siderably. Indeed, scoring is the more expensive part. To compensate for this, a
sampling technique may be considered2.

3.2.4 Other problems

We use a coarse-to-fine control structure. Each image of the original stereo pair is
consolidated to form a pyramid of images representing different resolution levels.
Feature extraction is carried out independently for each level. Disparity values
computed at coarser levels are used as a prediction for subsequent levels.

As in [14, 7], matches are validated symmetrically. As would be expected,
this strategy of validation allows to greatly reduce the number of false matches.
Already matched points are no more considered as candidate of any unmatched
point, in order to impose the uniqueness constraint.

We note that coarse-to-fine control structure and simultaneous match selection
are both mainly intended for a more reliable matching.

Interpolation is performed along a contour to fill unmatched gaps. Before this,
we check to see whether at some locations disparity continuity is satisfied on only
one side, to make sure that a contour does not belong to more than one surface.
If this is the case, the contour is split at such locations.

To conclude this section, we point out that the same constraint (e.g., DG limit)
can be implemented quite differently in different algorithms. However, it does not

2 Used in the latter version of the implementation.
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make sense to tune parameters derived in the continuous domain for ideal cases
without being able to cope with noise properly. This largely explains why different
algorithms using similar constraints perform quite differently.

4 Experiments
The algorithm has been tested on numerous stereo pairs, including indoor, out-
door and synthetic scenes. The three scenes we show here are chosen for their
complexity. Depth variations in the scenes are important, and this permits to see
whether occluding boundaries can be well dealt with.

Evaluation of stereo algorithms is always a tough task due to lack of well-
defined procedures, criteria and database with ground truth. So we give here both
numerical results and images for qualitative analysis. Different views of the results
of 3-D reconstruction are also provided to allow a visual evaluation. Analysis,
qualitative and/or quantitative, is made as well, whenever possible.

4.1 Input data and Parameters
The input consists essentially of contours made up of connected edges. Edges
are detected by the edge detector described in [5]. Edge linking is performed
by using the algorithm presented in [8], and the contours serve as support for
global consistency checking. Each edge point is associated with its magnitude and
orientation.

The parameters involved in the algorithm are: 1. Local similarity criteria (i.e.,
norm and orientation of each edge point); 2. Neighborhood size for scoring; 3.
Radius of search region for estimated disparity; 4. Disparity gradient limit; 5.
Disparity range; 6. Number of iterations for the scoring and match validation.

During the whole test, none of the parameters has been changed from scene
to scene, except the disparity range. In fact, the parameters scarcely affect on
the matching results, provided that those lie in a reasonable interval (for details,
see [9]). The failures reported result from the characteristics of the images (e.g.,
repetitive patterns) rather than from an inappropriate choice of some parameters.

4.2 Results
Synthetic scene This scene contains a cylinder, a cone, an ashtray, a torus, and
a calibration grid. The surfaces of the first three objects are textured. From Fig.3,
we can see that almost all edge points visible to both views are matched. The 3-D
visualization3 shows that no false match is found. Zigzags in the reconstructed
scene are due to the discrete effect in edge position. Notice that textures (including
squares on the grid in a large sense) have been correctly matched. This is because
the directions of repetition do not coincide with that of sloping epipolar lines, and
this does not mean that our algorithm is able to deal with repeating patterns (see
Section 5).

Rocks and grid This scene contains rocks and a calibration grid on the ground
in front of a wall. Due to the small depth, the perspective distortion is important,
especially for the rocks. This explains why only 55% (=9372/17047) of edge points
find their potential matches (see Table 1). Still, edges resulting from the main
structures of the scene are well detected on both images and matched.

Nonetheless, the matching suffers from the repeating squares on the grid. Only
a portion of edge points of these are matched and this owing to the coarse-to-fine
control structure. Part of the contours on the top of the grid are not well matched,
due to two factors: (1) they lie on epipolar lines; (2) the calibration and thus the
computation of epipolar lines are not precise. This is also why zigzags in the
reconstructed scene are more noticeable than those in the synthetic scene.

3 Reconstructed points of a same chain are linked. The same is true for all 3-D visualizations.
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Original image (1) Edge image 1 Edge image 2

Matched edges (1) Top view
Figure 3. The synthetic scene.

Side view

Road This is a complex road scene composed of moving objects (cars, van,
cyclist), road markings, trees, etc.. Edges are well matched. The line indicated
by an arrow in Fig.5(f) results from the false edge points on the right side of the
images.

Some numerical results are displayed in Table 1. CPU time is measured on a
Sun SPARCworkstation IPC.

Scene
Synthetic
Rocks and grid
Hoad

Disp
range
10, 70]
[50, 97]
[-40, 10J

Table 1.

Nbof
T

14374
17047
18265

Numerics

points
C

12074
9372
12278

results.

V
9990
7451
10510

Nb
JSI
15
68
44

of matches
P

649
475
541

1
1548
2834
2304

F
12143
10598
13204

CPU
time (s)

94.3
115.0
97.9

T: total number of edge points in the left image (or View 1; the same for the
rest);
C: number of points having at least one candidate match;
V: number of matches obtained by the match validation procedure;
N: number of noisy matches among V (suppressed);
P: number of matches picked up from candidate lists of unmatched and
satisfying the disparity continuity constraint;
I: number of matches obtained by disparity interpolation;
F: final total number of matches.

From Table 1 we see that over 80% of points having candidate matches are
validated within 3 iterations, with about 80% in the first iteration. Among final
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Original image (1) Edge image 1 Edge image 2

Matched edges (1) Leftside view
Figure 4. Rocks and grid.

Rightside view

matches, up to 25% are obtained by interpolation. Chain splitting guarantees the
safety of this operation.

5 Evaluation of general performance
5.1 Robustness
Robustness has always been our primary concern during the development of this
algorithm. Except for the problems discussed in the next section, the robustness
of the algorithm is attested by the following points:

1. The parameters in the algorithm are practically insensitive to different types
of scenes.

2. The use of DG limit allows us to cope with stereo images which have under-
gone relatively significant perspective distortions.

3. By relying more on the global consistency constraint and only imposing a
rough similarity criterion, occluding contours can be correctly matched.

4. The algorithm is not restrictive with respect to the shape of contours. In
fact, a group of points lying on a same chain, as long as they come up
to form candidate matches with their counterparts in the other image, will
be maximally scored, regardless how the counterparts are grouped, i.e., the
shape of contours these counterparts form. This can also be seen in Eq. (3).

5. Except for special cases the algorithm is unable to cope with (Section 5.3),
the majority of matchable points are in fact matched.

6. The error percentage is quite small, owing to the use of the small DG limit
which is made possible by the constant term taking into account the dislo-
cation of edges in discrete images.
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Original image (Left) Left edge image
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Matched edges (Left) Top view
Figure 5. The road scene.

Left top view

5.2 CPU time
The CPU time is divided into two parts: extraction of primitives and matching.
Matching time is predominantly the extraction of primitives, despite the additional
time needed to obtain edge images at coarser resolutions.

During matching, score computation is the most time-consuming. We observe
that among validated matches, over 70% result from the first iteration. So, in
principle, there is no problem if the number of iteration is set to a minimal number,
say, 2. The rest of the matching can be completed by the following steps - selecting
matches among candidates and interpolation.

As discussed in Section 3.2.3, an alternative to further reduce scoring time is
to use some kind of sampling technique. Moreover, score computation is paral-
lelizable. So to further speed up the matching process, special hardware and/or
parallel architectures can be used.

We indicate finally that no special effort has been done to optimize the source
code.

5.3 Failures and ill-fitted cases
Failures are found principally with repeating patterns. Here we consider a contour
segment parallel to the epipolar lines as a special case of repeating patterns, with
the edge point being the smallest element.

As for problems in the presence of significant perspective distortion, we think
that the problem lies rather in what to match than in how to match. In fact, in
such cases, corresponding features are not available because of the dissimilarity
of image patches. However, it is evident that in most application contexts, a
stereo system using this type of method should be arranged in such a way that
perspective distortion, if present, is reasonably small.

Another failure case concerns scenes some portions of which do not contain
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sufficient salient features or markings (including apparent occluding contours), as
in the rocks scene.

In summary, our algorithm fails in two typical cases: repeating patterns, or
lack of salient features. The first problem is inherent to binocular stereo and is
still open; the second is a proper problem of the algorithm (c/. area-based methods
work well on textured regions, which do not necessarily have salient features).

6 Conclusion and Future Work
In this paper, we have made a thorough analysis of stereo vision, concentrating
on the correspondence problem. We pointed out that one of the most useful cue
for matching, namely the shape similarity, was not efficiently exploited in other
existing algorithms. To make full use of shape similarity, a limit in shape variation
must be determined. Moreover, noise in data and geometric distortion must be
appropriately handled.

The limit in shape variation is expressed in disparity gradient limit. It is a
compromise between the quantity of matches and the quality of matching. We
have shown that a DG limit as small as 0.2 can be used, which allows the majority
of scene surfaces to be correctly coped with. Prom an implementation point of
view, such a small DG limit is made possible, to some extent, by appropriately
expressing the uncertainty in an image point position in the allowable disparity
difference.

A simple voting scheme has been proposed. In order to take advantage of the
ability of shape similarity for disambiguation, in addition to the use of a small DG
limit, support from neighboring points for a candidate match is not weighted An
advantageous property of the voting scheme is that it is not restrictive with respect
to input data. It is not affected by different configuration of contour points, which
frequently encountered in practical cases.

The algorithm is computationally efficient. Of more interest is that its most
time consuming part is parallelizable.

The algorithm has been fully tested on a great variety of scenes, in particular
complex outdoor ones. Its robustness is evidenced by that fact that none of the
parameters has been adjusted during those tests, and the results are satisfactory
both in terms of the quantity of matches and the correctness of these in normal
circumstances.

A possible limitation of this algorithm is that it yields disparity information
which might be too sparse to some applications. However, due to the high quality
of matches, we think it is particularly promising to combine this algorithm with
other schemes such as area correlation based ones, which suffer from occluding
contours.

The same voting scheme is also applicable to the temporal matching problem.
The only difference between the two problems is that the epipolar constraint is
absent in the latter. It suffices then to impose the DG limit in both vertical and
horizontal directions.
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