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Abstract

Noise-corrupted signals and images can be reconstructed by regularization.
If discontinuities must be preserved in the reconstruction, a non-convex solu-
tion space is implied. The solution of minimum energy can be approximated
by the Graduated Non-Convexity (GNC) algorithm. The GNC approximates
the non-convex solution space by a convex solution space, and varies the solu-
tion space slowly towards the non-convex solution space. This work provides
a method of finding the convex approximation to the solution space, and the
convergent series of solution spaces. The same methodology can be used on
a wide range of regularization schemes. The approximation of the solution
space is carried out by a scale space extension of the smoothness measure,
in which a coarse-to-fine analysis can be performed. It is proven, that this
scale space extension yields a convex solution space. GNC by smoothness
focusing is tested against the Blake-Zisserman formulation and is shown to
yield better results in most cases. Furthermore, is it pointed out that Mean
Field Annealing (MFA) of the weak string does not necessarily imply GNC,
but behaves in a predictable and inexpedient manner.

1 Introduction
Regularization is a method of reformulating ill-posed inverse problems as well-
posed problems as done by Tikhonov and Arsenin [1]. This reformulation implies
the addition of a stabilizing term, followed by a global minimization in a convex
solution space, yielding a unique solution. As computer vision can be regarded as
inverse optics, many computer vision problems are ill-posed by nature as argued
by Aloimonos and Shulman [2]. Therefore, regularization is often applied in com-
puter vision. By standard regularization of the surface reconstruction problem,
discontinuities will be smoothed. As discontinuities plays an important role in
vision, schemes for discontinuity preserving regularization has been proposed by
eg. Geman and Geman [3]. The schemes of discontinuity preserving regularization
implies minimization in a non-convex solution space, why the avoidance of local
minima in the optimization procedure becomes a problem. Optimization in the
non-convex solution space has been performed by simulated annealing by Geman
and Geman [3], by genetic algorithms by Jensen and Nielsen [6] and by the deter-
ministic approaches of Graduated Non-Convexity (GNC) by Blake and Zisserman
[7] and Mean Field Annealing by Geiger and Girosi [14].

Blake and Zisserman have developed the deterministic and approximative ap-
proach of GNC [7], which implies an approximation of the non-convex solution
space by a convex solution space. This approximation of the solution space is
slowly varied towards the non-convex solution space, in the hope that the local
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minimum, which is tracked, will converge to the global minimum of the non-convex
solution space. Blake and Zisserman have found an approximation of the solution
space in special cases, such as the weak string. Blake has shown, that in general the
GNC is faster than simulated annealing [8], why GNC is desirable in many other
situations than the weak string. This work presents a general scheme for creating
GNC algorithms. It is proven, that any stabilizing term, which is determined as
the sum of functions of the local derivatives of the solution, can be approximated
by a Gaussian scale space extension, yielding a convex solution space (The adi-
abatic approximation used by Rangarajan and Chellappa [9] can be used to put
non-local derivative-interactions on a local form). By slowly varying the standard
deviation of the Gaussian towards zero, the solution space of the approximation
will slowly vary towards the non-convex solution space. The scheme corresponds
to the scheme in any coarse-to-fine analysis as eg. the edge focusing by Bergholm
[10]: Make a scale space extension, detect the solution on the highest scale and
track the solution to lower scales to gain precision in the solution.

2 Surface reconstruction
An example of an ill-posed problem is the reconstruction of a signal s corrupted
with stationary and additive noise n yielding the measured signal c. The solu-
tion s to the reconstruction problem can be found by standard regularization as
minimization of E(s) = /(c — s)2 + Xs^dx where subscript denotes the derivative
and A is a weighing between smoothness and data term. The term, which is to
be minimized is called the energy, the first term in the integral is called the data
term and the second term is called the stabilizing or smoothness term.

If the underlying function s contains discontinuities, and these must be pre-
served during the regularization, schemes like the line process by Geman and
Geman [3] or the equivalent smoothness thresholding by Blake and Zissermann [7]
can be used. The elimination of the line process yielding the smoothness thres-
holding is a special case of the adiabatic approximation [9]. The idea is to punish
derivatives no more than some certain value even if it grows towards infinity. In
this case the solution is not influenced by any force from the smoothness term,
when the derivative is high, and the solution can totally adapt to the data, and
thereby preserve the discontinuities. The two different formulations of the discrete
discontinuous regularization is given in Equation 1 (line process) and Equation 2
(smoothness thresholding).

E(s) = X > - S)2 + A ( ^ + (1 - r,)T2) (1)
M 3

where E has to be minimized over r](x) as well as s(x), and T2 is a constant
punishment for detection of discontinuities. In the minimized solution, rj will
always yield 1 or 0, dependent on whether s2 > T2 or not. The smoothness
thresholding formulation is

E(S) = J > - s)2 + /(I,) where f(t) = A { £ ^ £ (2)

where T is the same constant as in Equation 1. The solution, which minimizes the
energy of Equation 1 and Equation 2 will be piecewise continuous, and then in a
finite number of points be discontinuous. Whether a point yields a discontinuity
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depends on the input signal, the discontinuity threshold T and the weighing A.
The interaction between the factors is not simple. For a discussion see Nielsen [4].

Many other smoothness functions / has been proposed. In general, the smooth-
ness functions are quadratic in the derivative for values close to zero. If discon-
tinuities are to be preserved, the smoothness function is made less increasing for
larger values of the derivative. The dependency on larger values of the derivative
might be a constant function, a linear function, a logarithmic function, or any
other less than quadratic increasing function (see Nielsen [5]).

The GNC algorithm works by changing the smoothness function / to create the
convex solution space. In the following an example of the GNC approximation of
the solution space is outlined, before discussing the implications and other general
methods.

3 GNC of the weak string
The weak string is defined by minimization of the energy in Equation 2. The
solution space is not convex. Therefore, a stochastic optimization technique or
deterministic approximation has to be applied. The GNC is a deterministic ap-
proximation.

In Appendix A Lemma 1, it is shown, that the solution space is convex if the
second derivative of the smoothness function / in Equation 2 is bounded to be
larger than - \ . This is obviously not the case in Equation 2 where the second
derivative does not even exist in t2 = T2. The idea of the GNC algorithm is
to approximate / by another function, which is limited in the second derivative.
Blake and Zisserman obtain this by approximating / by f\ in the region where
t2 RS T2 by a second order polynomial with a second derivative larger than — -|.

If we denote the initial smoothness function / by /o, we can construct a series
of functions fc which is continuously varying as a function of c. When c = 1
the solution space is convex, and when c = 0 the regularization corresponds to
the weak string. The intermediate functions fc, c 6E]0; 1[ can be constructed by
letting the interval of approximation shrink to a factor c of the original interval.
The claim of Blake and Zisserman is that if we track the local minimum of fc,
when slowly varying c from 1 to 0, we will obtain a good approximation to the
solution of the weak string [7]. It is shown by Blake and Zisserman [7], that the
global minimum cannot always be tracked as the local minimum. A discussion of
convergence is given by March [13] and Nielsen [11].

Other approximations to the initial smoothness function, which yield a convex
solution space, can be constructed. In the following the scale space extension is
proposed. In Appendix A it is proven that the weak string has a convex solution
space if the smoothness function is convoluted by a Gaussian of appropriate stan-
dard deviation. In fact, it is proven that any smoothness function, which only
differs from the one of convex solution space by a Lebesgue integrable function,
will cause a convex solution space if the smoothness function is filtered with a
Gaussian of appropriate standard deviation. In this way a convex solution space
can be constructed, and the solution can be found using a simple gradient de-
scend algorithm. When slowly decreasing the standard deviation of the Gaussian
towards zero, we can track the solution to the optimization problem by tracking
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the minimum as a local minimum. When the standard deviation yields zero, the
tracked solution is an approximation of the solution to the original problem.

This is a general scheme of constructing a GNC algorithm, which only requires
that the smoothness function fulfill the demands of Lemma 2 in Appendix A. The
algorithm is presented as follows:

a = ao
while a > (T\

Minimize Ea{s) = J2(c ~ *)2 + fo(h)
a = a/8

endwhile

where a is the standard deviation of the Gaussian used for convolution of the
smoothness function / . In Appendix A a conservative measure of <JQ is given. In
practice we might find <r0 by iteratively increasing a and test the second derivative.

The smoothness focusing can be interpreted from a view of Bayesian estimation.
If the measurements of the derivatives of the intermediate solutions are perceived
as noisy, with Gaussian uncorrelated noise, the smoothness term should as an
approximation be convoluted by a Gaussian to yield a Maximum A Posteriori
(MAP) estimate. For a more thorough explanation see Nielsen [12].

4 Mean Field Annealing and GNC

Mean Field Annealing (MFA) is a technique, which is a deterministic version of
Simulated Annealing. Instead of simulating the stochastic behaviour of a molecule,
the mean state of all possible states of the molecule is simulated. This implies,
that the MFA is deterministic. To find the mean state one has to integrate the
probability of all possible states as defined by the partition function [15]. The
partition function is not always easily integrable, and approximations has to be
carried out very carefully. Geiger and Girosi claims, that the MFA of the weak
string is a GNC algorithm. This is not the case as the solution space might always
be non-convex. In the work of Geiger and Girosi [14], the smoothness function has
the form:

where a can be interpreted as the temperature. This has the characteristics of be-
ing a smoothed version of the weak string. When a approaches zero, the smooth-
ness function approaches the weak string. When a approaches infinity, the lower
bound on the second derivative approaches a negative limit, which is dependent on
A. The limit is empirically found to be approximately 0.6A, which shows, that the
MFA is not a GNC for A > 0.9 approximately. The positions on the smoothness
function, where the second derivative takes its minimum value is approximately
a linear function of the temperature, for high temperatures. This means that the
concavities in the solution space is placed in ±ka, where k is some constant. If
a is initialized to a value, such that every derivative in the signal is in the inter-
val [— ka; ha], no discontinuities will be detected using this cr. As a is decreased
slowly, the concavities traverse towards zero. As we track the solution as a local
minimum, the solution stays in the interval, when <r is lowered. This means that
no discontinuities are detected if the temperature is started high enough, because
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the derivatives are pulled towards zero. The consequence of the MFA is, that the
initial temperature defines the discontinuity positions. Implementations of Geiger
and Girosis MFA algorithm [14], where the line process has been eliminated as
done by Blake and Zisserman [7], and implementations of the MFA of the line
process directly as proposed by Hansen [16] yield identical results and both show
this tendency very clearly.

The argumentation of using MFA is solely based upon statistical physics. In
statistical physics Mean Field Theory is not regarded as a good approximation
inside the critical regions. The weak string is normally situated in a critical region.
A critical region is the regions of the parameter settings, where phase transitions
are present. If both discontinuity points and non-discontinuity points are present,
the weak string is in the critical region. If not, another model than the weak string
could have been used.

The Generalized Graduated Non-Convexity algorithm [9] gives a method of
eliminating non-local interactions by adiabatic approximation. It does, however,
not in general guarantee a GNC algorithm. The GGNC is a broad class of algo-
rithms, among which some are GNCs. The scale space extension is a special and
constructive case of the GGNC.

5 Experiments
Whether the approximation using the scale space extension is better or worse
than special designed GNC approximations [7] is not easy to judge. The specially
designed approximation has the advance, that the smoothness function is only
changed around the critical points where the second derivative is smaller than
— ̂ . The Gaussian convolution yields the theoretically satisfying property of being
explainable from probability theory [12]. In the following the resemblance and
difference is analysed. In [5] the Gauss GNC is tested on 2D images.

The outcome of the GNC algorithm implemented as done by Blake and Zis-
serman [7] is compared to the Gaussian convolution of the smoothness function.
The testproblem is the minimization of the energy in Equation 2. The Blake and
Zisserman approximation is outlined in Section 3. The scale space extension of
the smoothness function is:

fa(x) = T2+a2 + x2
2~

T\erf(x_) +

X<7 2 2 TV 2 2
X X

2TT

where

y/2(x-T)
X =

T h e qual i ta t ive difference between the Blake-Zisserman approximat ion and the
scale space approximat ion is t h a t the scale space not only rounds off the corners,
it also increases the value in zero. In Figure 1 the two different approximat ions are
shown. In the scale space extension, the second derivative only yields the critical
value of — ̂  in two poin ts . T h e Blake-Zisserman approximat ion yields t he critical
value in two ra ther wide intervals. In these intervals, the solution space is nearly
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Figure 1: Smoothness function of the derivative of the solution in starting level of
GNC as formulated by Blake and Zisserman and in scale space extension.

non-convex, and might have a zero-gradient. This means that a gradient descend
algorithm will probably end up in one of the ends of the interval at random.
Whether a gradient in the input is perceived as a discontinuity or not, might in
this way be random. Two types of experiments have been performed. One, on
a noise-corrupted signal, and one on an ideal and precisely adjusted signal. The
latter to test the precise behaviour to certain features, the first to make an overall
judgment.

An ideal signal consisting of an interval of negative gradient, an interval of zero
gradient, a step edge, and an interval of zero gradient has been noise corrupted
with stationary Gaussian noise with standard deviation a — 2.5. The two GNC
algorithms has been run on the signal. The result of the Gauss GNC can be seen
in Figure 2. The Blake-Zisserman GNC detects two more discontinuities (in the
high gradient interval) than the Gauss GNC. The Gauss GNC yields a final energy
which is 88 percent of the total energy of the energy found by the Blake-Zisserman
algorithm. This is a general tendency which is emphasized in the next experiment.

0 10 20 30 40 50 60

Figure 2: Regularized signal using the weak string approximation by Gauss GNC.

The two GNC algorithms are not always detecting the same discontinuities. It
is well know [7], that the weak string will detect discontinuities from a gradient,
if the gradient g > H= [4]. In this experiment, the algorithms has been tested
on a constant gradient. From each experiment to the next, the gradient has been
increased. In Figure 3 the energy of the solution found by the two algorithms
is plotted as a function of the gradient. In regions, where the solution is not
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changing the detection of discontinuities, the plot should be a parabola. For
each combination of discontinuities a parabola exists. The perfect GNC algorithm
would for a given gradient choose the parabola of lowest energy. This is not the
case for any of the two algorithms evaluated in this paper.

The experiment shows, that initially, where the gradient is small, non of the
algorithms detect any discontinuities, and the solutions are thereby identical. From
a certain point (around g = 0.6) the Blake-Zisserman GNC detects discontinuities,
and thereby leaves the initial parabola. The energy increases relative to the initial
parabola, and it can be concluded that the discontinuities has been detected too
early. In Figure 4 a zoom-in on the region of differences can be seen. The Gauss
GNC follows the initial parabola until the gradient g is close to 0.8. After this it
follows a new parabola. The energy drops from the first to the second parabola,
and it can be concluded, that discontinuities has been detected too late. In the
region of larger gradients (approximately 1.6), the Gauss GNC result in the worst
solution, as too many discontinuities has been detected. This region is, though, of
less interest, because it is the region where nearly all points has been detected as
discontinuities. This situation should never appear in a realistic environment.

Figure 3: The energy of the weak string as a function of the gradient. For each gra-
dient a signal of length 20 and constant gradient has been constructed. The energy
is plotted for the Blake-Zisserman GNC and for the Gauss GNC. A = T = 1.0 in
all computations. In the interval of gradients 0.6 < g < 0.95 the Blake-Zisserman
GNC yields a higher energy than the Gauss GNC except in the region 0.75 — 0.78.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure 4: The energy of the weak string as a function of the gradient. Computa-
tions performed as in 3. Focus is on the region of different energy.
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6 Conclusion
A general method to construction of Graduated-Non-Convexity algorithms has
been proposed. The method (called Gauss GNC) can be used for approximation
of any penalty function, which is a function of a single derivative of the solution.
It implies a scale space extension of the penalty function. It is proven, that the
method yields convex approximations for any penalty function, which can be con-
structed as the sum of a smoothness function with convex solution space and a
Lebesgue integrable function. The method can be derived from estimation theory.

In the case of the weak string, the application is straight-forward, and yields
results, which in general are better than those of Blake and Zisserman. The Blake-
Zisserman GNC has a tendency to over-estimate the number of discontinuities,
while the Gauss GNC has a tendency to under-estimate the number of discontinu-
ities. It is shown, that the tendency in general is the worst for the Blake-Zisserman
GNC.

Earlier, Mean Field Annealing has been used to make deterministic approx-
imations to the process of simulated annealing of the weak string. MFAs does
not yield a GNC algorithm of the weak string, as the solution space not is convex
even for infinite high temperatures. The start temperature of the MFA defines the
positions of the discontinuities. No matter how low the discontinuity threshold is,
it can be matched by a starting temperature, which results in no discontinuities.

The Gauss GNC implies the possibility of automatically applying GNC to any
regularization, where the smoothness function is function of only one derivative of
the solution. In a general situation, an analytic expression of the penalty function
is not needed. This implies the possibility of using a penalty function, which is
measured as a histogram, and then only numerically known. In this way a new
category of GNC applications is made possible.

I want to acknowledge M. B. Larsen, S. I. Olsen for discussions of GNC, P. Jo-
hansen and K. Grue for discussions of scale space theory, and Jens Jensen for
discussion of Mean Field Theory.
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Appendix A

In this appendix, the proofs of convexity of the solution space, when the smooth-
ness function is scale space extended is given. The proof falls in two lemmas.
The first concerns the conditions on the smoothness function to create a convex
solution space. The second concerns the scale space extension of functions which
behaves nicely except for an integrable part.

Lemma 1 / / the second derivative of the smoothness function f can be bounded
downwards to — | the solution space will be convex if the energy E of the discrete
sampled signal is given by

£(S) = £(S t--Ci)
2 + /(i i-S._i) (3)

Proof The solution space is convex if the Hessian Matrix Ji of the energy is
positive definite. In this case

Q2E { - / / ' iti=j + l
nii = -±j^ = { 2 + K + f'^ if»= j

where f!'= I * ( l 8l~l> .7 >Jl 1 0 otherwise

By definition of positive definiteness the solution space is convex if:

1

Because J2i^xi)2 > ^2(xi ~ xi-i)2 f° r aH x> % 1S positive definite if Vi : / / ' > —^
End of proof
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The lower bound on the second derivative can be reached by a convolution of
the smoothness function / by a Gaussian with an adequate standard deviation a
if the smoothness function only differs from the convex smoothness function by a
Lebesgue integrable function.

Lemma 2 If we let b be any constant, * denote the convolution, and G(x,a) be
the Gaussian in x of standard deviation a we have for any function f which

d2 f
Ve > 0 : Vx G IR : f(x) = g(x) + h(x), j-^gix) > -b2 + e, / \h(x)\dx = A

J lit
implies thai

Proof We have

= S G(k,a)~g(x-k)dk+ I h(k)^-G(x-k,o-)dk
Jm, ox2 7ni dx2

> I (-b2 + c)G(k,a)dk- f \h(x)\\^G(x-k,cr)\dk
JJR J1R &X

> (e-62) f G(k,a)dk- [ \h(k)\aupi€TR\-f^G(x - i,*)\dk

This is a lower bound on the second derivative of the convolution. This bound
should be greater than — b2 to prove the lemma.

End of proof

As an example, we can mention the weak string. The smoothness function of
the weak string can be described as a constant function, plus a negative parabola
in a limited region. By simple calculations we find, that the solution space is
guaranteed convex by Eg. 4 if

It should be mentioned, that this bound is a conservative measure, and in
practice much smaller values of a might yield a convex solution space. Actually,
in practice we find the limit for the weak string of first order regularization to be
30% lower in the example used earlier in this paper.


