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Abstract

This paper presents a method that extracts the surfaces of static ob-
jects that occlude other objects from a spatiotemporal image captured with
straight-line camera motion. We propose the concept of occlusion types and
show that the occlusion types are restricted to only eight patterns. Fur-
thermore, we show occlusion type pairs contain information that confirms
the existence of surfaces. Occlusion information gives strong cues for seg-
mentation and representation. The method can estimate not only the 3D
positions of edge points but also the surfaces bounded by the edge points.
We show that combinations of occlusion types contain information that can
confirm surface existence. The method is tested successfully on real images
by reconstructing flat and curved surfaces.

1 Introduction

Computer vision techniques address the reconstruction of the 3D world to real-
ize navigation and scene recognition. Many reconstruction techniques have been
proposed. One early work was the interpretation of line drawings [1]. Line and
vertex labeling methods have been proposed, but their targets are restricted and
the results were ambiguous [2, 3]. Many stereo vision systems have been proposed,
but because only two views are used, ambiguous interpretations are created [4, 5].
Because it uses multiple views, the spatiotemporal image analysis method [6, 7]
is attractive. It can avoid the problems of pixel correspondence that plague stereo
analysis. The spatiotemporal image is a sequence of successive images taken with a
camera. Because the spatiotemporal image contains an abundance of information,
reconstruction can be extraordinarily precise. If a camera is moved along a straight
horizontal line, the trajectories of feature points appear as line segments on the
horizontal slices (called the epipolar plane images) of the spatiotemporal image.
The distances from the camera to the feature points can be determined from the
inclination of the trajectories [8]. Therefore, epipolar plane image analysis can
compute the three dimensional positions of object features easily. The existing spa-
tiotemporal image analysis methods produce only three dimensional coordinates
of feature points such as edges. Moreover, these methods yield only information
about the feature points; the existence of surfaces is not treated. Therefore surface
reconstruction requires an additional process.

One interesting approach is to use occlusion detection to reconstruct 3D sur-
faces. Occlusion detection has been studied to extract the qualitative informa-
tion that indicates on which side of an edge a surface belongs [9, 10]. Occlusion
detection by stereo analysis [10] and occlusion/disocclusion detection in velocity
fields [9] have been studied. Geiger et al. showed the validity of discontinuities
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for binocular stereo [11]. Little et al. detected direct evidence for occlusion in
stereo and motion [12]. They indicated that labeled discontinuities would greatly
simplify segmentation and recognition. However, no existing technique achieves
complete three dimensional surface reconstruction. Multiple-base line stereo, for
example, fails to distinguish occluding objects from oceluded objects [13].

This paper extracts the surfaces of a static occluding object from a spatiotem-
poral image taken under straight-line camera motion. We propose the concept
of occlusion types and show that the occlusion types are restricted to only cight
patterns. Furthermore, we show occlusion type pairs contain information that
confirms the existence of surfaces. Occlusion information gives strong cues for
segmentation and representation. Our method can estimate not only the 3D posi-
tions of edge points, but also the surfaces between the edge points. Details of the
proposed method are described in Sections 3. In Section 4, our method is tested
successfully on synthesized images as well as real images.

2 3D feature points extraction from spatiotem-
poral images

In this section, we describe about usual spatiotemporal image analysis methods.
In the spatiotemporal image taken by a camera moving along a straight horizontal
line at constant velocity, the distance from the camera to an edge point is indicated
by the slant of the edge point trajectory on the horizontal slice plane (called the
epipolar-plane image or EPI) of the spatiotemporal image. Figure 1 (a) shows an
example of a spatiotemporal image. Figure 1 (b) shows an EPI of the spatiotem-
poral image. The slant of the trajectory of an edge point close to the camera is
less than that of a feature point far from the camera. The distance from the edge
point to the camera can be determined from the slant of the edge point trajectory
_and the camera speed.

The global coordinates X-Y-Z are defined as shown in Figure 2. Here, the view
point o moves on the X axis at a constant speed, and the optical axis is parallel
to the Z axis. An object’s image is projected onto the plane; Z = F, where F
denotes the focal length of the camera. wu-v denotes the projection plane. The
spatiotemporal image is an accumulation of projection planes u-v captured from
different view points. Point (z,y, z) in global coordinates is projected as p;(w.v)
on the projection plane. Let v’ be the velocity of p;(u,v), which corresponds to
the slant of its trajectory on the EPIL. The global coordinates of point (z, y, z) can
be written as

; ! ! A8}
(z,9,2) = (_%M.—ﬁ,—ﬂ). (1)

u o'

where d and d' are the view point’s position and velocity, respectively. Equation
(1) can be rewritten as follows:

(u,v) = (-f—(z—d}.—g—y) . (2)

Equation (2) indicates that u is a linear function of d and v is constant for a fixed
3D point (z,y,z). That is, p;(u,v) draws a straight line on the EPL Therefore,
the three dimensional position of an object’s feature points is calculated by line
detection on the EPI using edge detection and the Hough transformation [14].
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Figures 3 show detected edge point trajectories on the EPI . Figure 4 shows the
reconstructed three dimensional edges of some leaves. As seen from this figure,
ordinary spatiotemporal image analysis fails to reconstruct the surfaces.

3 Surface extraction using the occlusion types
principle

In this section, we deseribe about the occlusion types principle and surface extrac-
tion algorithm using the principle.

3.1 Occlusion types

An edge point trajectory that hides another trajectory as shown in Figure 5, and is
called an occlusion. Occlusions can be classified by the types of trajectory crossing
points, which are called the occlusion types (abbreviated OT).

There are 16 probable patterns as shown in Figure 6. They represent the
combinations of visible and invisible edge point trajectories at the cross point of
any two (or three) edge point trajectories. In this figure, the camera moves from
left to right and the time axis runs from top to bottom. The solid lines are visible
edge point trajectories (tracks) and dotted lines are hidden edge point trajectories.
The shaded regions are surfaces (the front occluding surface is dark gray and the
rear occluding surface is light gray). We assume that each track (edge point)
cither bounds a surface or splits a surface. Pattern (1), in which all tracks are
visible before and after the occlusion, is impossible, because no surface is attached
to either track. If two tracks cross, the one closest to the camera must hide the
other. From this property, Patterns (2), (9), and (10) are impossible. The heavily
shaded areas in the figure show the surface(s) of the third track which crosses the
others at the same point. Patterns (12) and (14) are impossible, because pattern
(12) contains impossible pattern (9) or (10). Pattern (14) contains impossible
pattern (2) or (10). Furthermore, pattern (6) and (11) are impossible because the
third track occludes a track that is closer to the camera. Thus the occlusion types
are restricted to the eight named patterns shown in Figure 6.

If more than two tracks cross, we can extract all occlusion types for all the
combinations of track pairs. The occlusion types along a track are accumulated
to recover surface information.

Pattern (3) is called Type-T. Pattern (4) is called Type-A. In this pattern,
both tracks have been occluded by the third track. Pattern (5) is called Type-y.
Pattern (7) is called Type-/. In this pattern, one track has already been occluded
by another and has not yet reappeared. Pattern (8) is called Type-down. Pattern
(13) is called Type-v. Pattern (15) is called Type-up. Patterns (8), (13) and (15)
are variants of patterns (3), (5) and (7), and show the occlusion of the third track.
Pattern (16) is called Type-hidden.

3.2 Occlusion type pairs

A surface appears as an EPI belt bordered by at least one track. Surface occlusion
can be detected by examining the OT pairs of the neighboring cross points along
each track as shown in Figure 7. Typical OT combinations include the combina-
tions y-T, /-y, /-T, v-A, etc., as shown in the figures. Note that the OT order is
important, the y-T combination means that the y occlusion occurs earlier than the
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T occlusion. Table 1 shows that only 40 of the 64 pairs are feasible. The feasible
pairs are denoted by 'O’ while impossible pairs are identified by "X’. Feasibility
means that the OT combination indicates a logically feasible occlusion.

Among all possible occlusion pairs, only 16 combinations guarantee or suggest
surface existence. For example, if the two neighboring OTs on a track ey form the
y-T combination, it guarantees that a surface exists between the two edge points
forming the tracks e; and e; as shown in Figure 7 (a). This is because edge points
e; and ey are closer to the camera than edge point ¢y and the surface between
edges points e; and e; occludes the surface that includes edge point ey. Similarly,
we can see that the remaining 15 pairs guarantee or suggest surface existence as
shown in Table 1.

In this table, ”Guarantee:n-m” means that the OT combination guarantees
a surface exists between edge points n and m. "Suggests:n-m” means that the
OT combination suggests a surface exists between edge points n and m. This
suggestion can be confirmed by extracting the string of OT combinations along
the occluding edge point trajectory. In Figure 7 (b) the string is y-/,/-T. If a valid
OT combination is formed by the first and last OT, surface existence is gnaranteed.
The OT combination from this string is y-T which guarantees surface existence.

3.3 Surface reconstruction algorithm

Our algorithm recovers the surfaces of a 3D object as follows:

1. Edge point trajectories are detected from each EPI using edge detection and
the Hough transformation. Furthermore, 3D coordinates of edge points are
recovered,

2. Let e;; be the j th crossing point on trajectory l;, and let E(j) be the
number of edge points on the line segment between e;; and e;;4;. If the rate
of E(j) to the length of the line segment between e;; and e,;4, is smaller than
threshold 7', the line segment is regarded as being hidden. Otherwise, this
line-segment is regarded as being visible. Next, for the occlusion type of each
crossing point of each trajectory is determined as described in Section 3.1.

Labeled OTs on an EPI are shown in Figure 8.

3. Horizontal surfaces between edges are estimated from OT combinations. If
we detect an OT combination that guarantees surface existence between two
edge points as described in Section 3.2, the 3D points E; and E; correspond-
ing to the edges are connected by a 3D horizontal line segment (labeled S;;)
as shown in Figure 9 .

4. Vertical surfaces between edges are estimated from the OTs. If two edge
points on successive EPIs have the same occlusion type and they are close,
the 3D points E; and Ej. corresponding to these edges are connected by a
3D vertical line segment (labeled S;;) .

4 Experiments

In this section, our method is tested successfully on synthesized images as well as
real images, and the threshold is decided with the occlusion type principle.
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4.1 Synthesized images

We synthesized an image to confirm the validity of this method. The image con-
sisted of tall rectangular plates standing in front of a vertical lattice wall as shown
in Figure 10 (a). We made an image sequence of this scene assuming a horizon-
tally moving camera. Edges were detected from the synthesized spatiotemporal
image. This spatiotemporal image was generated from 200 images, each of which
was 255 pixels x 200 pixels in size. In this case, the EP1 was generated as a
horizontal cross section of the spatiotemporal image, because the camera motion
was parallel to the image scanning lines. The three dimensional coordinates of
edges were determined using Canny’s edge detection method [15] and the Hough
transformation. Figure 10 (b) shows the reconstructed surfaces. In this figure, the
plates in front of the wall were reconstructed. However, the surfaces on the back
wall were not reconstructed, because they did not occlude any other object.

4.2 Real images

Our method was tested using real images. We made the experimental system
shown in Figure 11. Image sequences were taken by sliding the camera sideways
and storing the captured images in a digital video tape recorder. We captured
a sequence of images of a scene in which rectangular plates were placed in front
of a lattice wall (the same arrangement as the synthesized image test), see Fig-
ure 12 (a). After 200 images were stored, they were transferred to a computer.
Edges were detected by Canny’s method. Next, all detected edges were calibrated
with the camera parameters which had been measured beforehand [16]. After cal-
ibration, the tracks became line-segments which were then estimated by Hough
transformation. Figure 12 (b) shows the reconstructed surfaces. As in the syn-
thesized image test, all surfaces except the back wall were reconstructed.

Furthermore, we tested the method by applying it to a scene consisting of
leaves in front of a book shelf, as shown in Figure 13 (a). The reconstructed
leaves are shown in Figure 13 (b). Our method can represent curved surfaces by
approximating them with many 3D line segments.

4.3 Parameter decision in occlusion analysis

We can decide the value of the threshold with the occlusion type principle. As
described in Section 3.3, the threshold 7' determines which occlusion types are
observed. When the threshold T is low, impossible OTs appear on EPIs. Let
OTrate be the ratio of possible OTs to the number of crossing points of edge
trajectories on an EPL

OTrate = —OTPE,MM , (3)

where OTpo44is1¢ is the total number of possible OTs and C is the total number
of crossing points of edge trajectories on an EPI. The relation between OT'rate
and threshold T is shown in Figure 14. In this graph, when T is 0, OTrate is
always 0 because all edge points are visible; an impossibility. As T' grows from 0
to 1, OT'rate rapidly increase to reach an initial peak value. When T is 1, OT'rate
is always 1 because all edge points are invisible; another impossibility. OTs are
correctly determined at the initial peak OT'rate value. For OT decision, therefore,
we can set T' to the value that yields the first peak value of OTrate.
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5 Conclusion

This paper has proposed a new technique for reconstructing the surfaces of static
objects that occlude other objects from a spatiotemporal image captured with
straight-line camera motion. We proposed the concept of occlusion types and
showed that the occlusion types are restricted to only eight patterns. Furthermore,
we showed occlusion type pairs contain information that confirms the existence of
surfaces. Occlusion information gives strong cues for segmentation and represen-
tation. Our method can estimate not only the 3D positions of edge points, but
also the surfaces between the edge points. The more occlusion there is, the more
robust against noise our method becomes. This is because occlusion is a guarantee
of surface existence. Our method was tested successfully with synthesized data
as well as real data. The tests showed that our method can reconstruct flat and
curved surfaces. The threshold parameter for occlusion type detection is decided
using the occlusion types principle. Occlusion does not always occur when we need
it. However, by projecting vertical strips onto the object and its background from
a fixed point, our method could reconstruct all occluding surfaces.
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Figure 3: Edge point tracks extracted
from edges by Hough transformation.

(a) Spatiotemporal image

(b) pipolar plane image

Figure 1: A spatiotemporal image.
(The u and the v axes mean coordinates
on the projection plane and the t axis
means the time.) and an epipolar plane
image.

Figure 4: Reconstructed 3D edges.
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Figure 2: The global coordinates. Figure 5: Occlusion types on EPIs.
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Figure 9: Connection of edges.
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Figure 6: All occlusion types composed
by two edge point trajectories.

Figure 7: Neighboring occlusion type (a) A synthesised lattice scene
pairs.

. ) ( b} Recutcted surfce o
Figure 8: Labeled cross point of edge

tracks. Each cross point of tracks is la-
beled such as “n-m-¢”: n and m mean
line numbers and ¢ means an occlusion
type.

Figure 10: 3D surface reconstruction of
a synthesized lattice scene,
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Figure 11: Our experimental system.
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Figure 13: 3D surface reconstruction of
leaves in front of a book shelf.

(a) Input scene

(a) Input scene

OTrate and Threshold T

(b) Reconstructed 3D surface

Figure 14: The relation between
OTrate and threshold T. EPIn means

Figure 12: 3D reconstruction of a real OTrate of the nth EPL

lattice scene.



