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Abstract

We describe a technique for matching a single, learned elastic model of the shape of
normal chromosomes to chromosomal images. Our model has a hierarchical organi-
sation, with increasingly coarse shape descriptions at higher levels. A problem of
finding the model description most likely to have generated an image is reduced to
one of matching the locations of model points to the locations of image features
encoded on a Kohonen Self-Organising Map (SOM). During matching, coarse shape
information is communicated between levels via fixed, viewpoint-independent
transformations between object-based frames. After matching, frame parameters
provide a compact, multi-scale description of important shape information. We pro-
pose using this information to train a neural network to recognise structurally dam-
aged chromosomes.

1. Introduction.

The statistical evaluation of chromosome structural damage is well-established
both as a method of radiation dosimetry, and as a way of assessing the potential
harm of chemicals. Analysis requires the search for different types of chromo-
somal structural aberrations which may be present in cells, but only at very low
frequencies. Figure 1 shows some examples of aberration types. Predominantly,
analysis is performed by skilled cytotechnicians using conventional microscopes.
However, microscope work is slow, laborious and subjective, and there is a great
demand for faster, more consistent techniques.

Detecting aberrations is a difficult problem due to the variability in chromosome
appearance. Chromosomes may bend, touch or overlap. In addition, objects
appear fuzzy under a light microscope, and staining gradients and the existence of
artifacts can be troublesome. A number of automated systems have been built
over the past twenty years [1,2,3,4]. Classification has been based on the measure-
ments of predefined image features. All have concentrated on recognising a lim-
ited number of important aberration types from the dozen or so that may be
distinguished [5]. Typically, attempts are made to detect just the 'dicentric', a
rather specific indicator of ionising radiation, and comparatively easy to recognise
in most cases from density profile and boundary curvature information [4].

We have been interested in the design of a neural network system for application
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to aberration recognition. The major characteristic of our system is its ability to
learn through experience. In particular, image features are learned rather than pre-
defined. We have not restricted ourselves to detecting dicentrics. Rather, we are
interesting in attempting to detect any one of a set of a dozen aberration types
commonly sought in toxicology studies [5]. As part of this approach we have
recently described: (a) a neural network technique for the initial location of scat-
tered chromosomal objects within images of human blood cells and (b) a neural
network centring and classification system applied to low resolution cell images
[6]. The system was centred around the use of a Kohonen Self-Organising Map
(SOM) [7] to extract image features.

(c) (d)
Figure 1. Sections from human blood cells showing examples of structural aberrations. Aberra-
tions are (probably) (a) chromatid deletion (b) minute (c) deletion (d) dicentric and fragment.

A 'post-labeled' SOM was also used in the classification stage. A number of prob-
lems can be identified with this approach to classification: (1) The (feedforward)
network possesses no prior knowledge of chromosome shape. All its information
must be extracted from training data. (2) When the network performs a classifica-
tion it does not give any explanation of its decision, nor does it make any shape
information explicit. (3) The network has difficulty dealing with bent chromo-
somes. In order to overcome these problems we have taken a model-based
approach. We use a single deformable elastic model of the normal chromosomal
shape, which is matched with low-level image features. These features are
extracted from chromosomal images by an SOM as in [6]. Once matched, infor-
mation made explicit by the model may be used to classify the object. Classifica-
tion has not yet been implemented, and is not described in this paper. A schematic
diagram of the current system is shown in figure 2.

In this paper feature extraction is described in section 2, and our elastic model in
section 3. The model-image matching technique is detailed in section 4. Some
results and a brief discussion appear in section 5.

2. Feature Extraction.

Kohonen's SOM is a biologically-plausible neural network which has recently
become popular, particularly in speech [8] and vision tasks, due to its ability to
learn, without supervision, non-linear, topological mappings from high dimen-
sional input spaces onto low dimensional coordinate systems. Typically, a map
consists of a 2D array of units, each with its own adjustable template. During a
period of training on example inputs, the templates adapt towards the salient fea-
tures of a multi-dimensional input space. After training, the dimensions of the
map correspond to the two 'most important' feature dimensions of the input space
[9]. A further property of the map is that the density of the units' templates
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approximates the density of the original input space. Consequently, each unit is
responsive to roughly the same proportion of input signals.
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Figure 2. Schematic diagram of centring and classification system.

Our SOM consisted of a 2D array of 10 x 10 units. Input vectors were the set of
image portions grabbed from windows placed in the vicinity of chromosomal
objects. Windows were 8 x 8 pixels in size. (We rotated image portions before
passing them as input to the network by a random amount so as not to bias the
mapping towards any one orientation). Details of the training algorithm used are
as given in [6], with the single exception that the initial 'training neighbourhood'
was 5 x 5 units. An example of the templates learned by the network is shown in
figure 3.

An inspection of figure 3 suggests that the SOM features are portions from a
roughly circular blob. Furthermore, the map dimensions correspond, approxi-
mately linearly, to the x and y coordinates of the centre of the blob relative to an
image window.

Once trained, the SOM in figure 3 was used to extract features in the vicinity of
objects, located within cell images by the neural network technique described in
[6]. A set of small, overlapping windows was placed on each located object There
were 19 x 19 windows in the set, each 8 x 8 pixels in size, and overlapping by
50%. Effectively, the SOM was duplicated for each window, so that there were 19
x 19 identical SOMs, which we arranged as a set of tiles. Each SOM extracted a
single image feature from its window, encoded by the location of its most respon-
sive unit. These locations were passed, initially to the centring neural network in
[6], and then, once a stable position for the window set had been found, to the
elastic matching subsystem. Note that 'homogeneous' image portions, as denned
by a simple statistical test, were not encoded by the SOMs.
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o
Figure 3. Templates in the SOM for high resolution images.

3. Elastic Model of a Normal Chromosome.

Elastic models [10,11,12] are just one of a class of physically-based deformable
models, prevalent in computer graphics, in which deformation is governed by the
laws of mechanics, in this case elasticity theory. Their selection was influenced by
their successful application to a number of difficult matching problems, notably
the Travelling Salesman Problem [13] and hand-written character recognition
[14]. Unlike Hinton et al, who employed an elastic model for each shape of inter-
est, we use just a single model of the shape of a normal chromosome. That is, we
do not have models for the shapes of damaged chromosomes. There are two rea-
sons for this. Firstly, elastic models are computationally expensive. Matching
many models to an image would be prohibitively slow. Secondly, we consider
each chromosomal object to be composed of a normal chromosome plus possible
damage, and the main task of matching is to make explicit information about the
damage relative to the normal chromosome. It is this information which we pro-
pose using to classify objects. Our model has a hierarchical organisation, with
shape descriptions of increasing coarseness at higher levels in the hierarchy.
Shape information is passed between these levels during matching. For the
moment, however, it is easiest to consider the shape description in a single hierar-
chy level.

3.1 A Single Model Description.

Typically, an elastic model consists of a set of points at given spatial locations.
These locations define an ideal shape, and elastic connections between points
define shape deformations from the ideal. However, the points in our model map
onto locations on SOMs, which define a set of model features. Therefore, the
'nature' of our model points depends upon the feature dimensions learned by the
SOMs, and need not be spatial. In fact, the current model points are spatial, since
our SOM encodes the locations of blobs. However, we are carrying out experi-
ments in which multiple SOMs are trained, and model points map, not only to the
spatial locations of blobs, but also to non-spatial features such as the orientation
and extent of a bar.
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As stated, SOM features are portions from a blob, and the locations on an SOM
can be thought of as linearly encoding the blob's location relative to the image
window. However, we assume that it is spatial locations relative to the image, that
is, relative to the space defined by the set of image windows, that is important for
matching. We create a new space, above the SOMs, to encode such locations. This
is the model point space, and it is proposed that model-image matching should
take place in this space. We map from a location xj, on the ith SOM at location rrij
in the tiled set, onto a location y in model point space, such that

y = ami + bxi (3-1)

where a and b are constants. The first term on the right hand side of equation 3.1
can be thought of as relating to the location of the ith window relative to the
image, and the second term relates to the location of a blob relative to this win-
dow. The constants a and b are found experimentally, by requiring the locations of
SOM features that correspond to portions from the same blob in the image
domain, to map onto the same location in model point space. The mapping is
reversible. A model point location maps onto those SOM locations which encode
portions from the same blob in the image domain.

We make use of 3.1 to encode an image, via the SOMs, as a set of locations in
model point space (see section 4.1). The reverse mapping is useful when interpret-
ing a model description. Each model point in a description maps onto SOM loca-
tions which in turn map onto a blob in the image domain. Similarly, the length of
an elastic connection between a pair of model points maps onto a distance
between blobs. Furthermore, the strength of the elastic maps to the strength of a
constraint that the blobs should remain at a constant distance apart.

'Object-based' frames are established in a model description in order to segment
the model into 'stable' shape regions, i.e., regions that may change position, ori-
entation or scale, but are subject to few shape distortions. Each frame is specified
by the parameters [x,y,c,s] where (x,y) is the frame's position, and c=rcosa, s=rs-
incc, where r is the frame's scale and a its orientation. The importance of the
frames rests with their ability to provide a suitable framework in which to express
shape information, and we will discuss them in more detail in subsection 3.2.

A single model level description consists of elastically-connected model points,
segmented into regions by, and defined relative to, object-based frames. We
deform a model by changing the length of the elastic between pairs of model
points. This corresponds to changing the distance between blobs in the image
domain. The deformed model is called a model instance. We assume that the
probability of an instance is the probability of generating the elastic lengths from
the points in each segmented region independently, and that elastic lengths have a
Gaussian distribution about their resting lengths in the undeformed model. The
probability of a model instance M given a model M is

P(M|M0)- JJ expl-K^rij-t*)2) ' (3.2)
r,i er,j

where r labels a segmented region and K;J is the strength of the elastic connection
between model points i and j . lry is the distance, relative to the frame for region r,
between model points in the model instance, and I10;,- is the distance between the
home locations of the model points. The cost associated with a deformation, i.e.,
its elastic energy, is proportional to the negative log of this probability.
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As a model description is matched with the image (see section 4), model point
locations change. We need to update object-based frames in order to compensate
for these changes, so that the frame parameters continue to provide reasonable
estimates of the position, orientation and scale of a region. We update frame
parameters for each region's frame by finding the changes in position, rotation and
scale that minimise the squared Euclidean distance between the home locations
and current locations of points in the region.

3-2 A Hierarchically-Organised Model.

Our model has a modular, hierarchical organisation of the kind suggested by Marr
for object recognition [15]. Each level in the hierarchy contains a shape descrip-
tion of the type detailed in section 3.1. As we move up the hierarchy, the descrip-
tions become increasingly 'coarse'. At the top level, the description consists of
just a few, elastically-connected model points, defined relative to a single object-
based frame. The parameters of this frame specify the global position, orientation
and size of a chromosome. At lower levels, there may be many frames, each
encompassing a stable region of the model for that scale of description.

Within the hierarchy there are weighted connections between 'parent' frames in
one level and 'constituent' frames in the level below. These connections encode
fixed, viewpoint-independent shape transformations between model regions in
different descriptions. Transformations ensure that, as the parameter values of a
parent frame change during matching at its level, its constituent frames maintain
the same relative position, orientation and scale (see Zemel [16]). Constituent
frames are themselves parents to frames in the next level down, so that shape
information feeds all the way down to the lowest hierarchy level. Since frames are
established in stable shape regions, they tend to provide a good (and compact)
descriptions of the shape at the currently matched level.

In addition to providing a simple, compact way of communicating shape informa-
tion during matching, the object-based frames also enable important shape infor-
mation to be made explicit after matching. This information may subsequently be
used in classification. In particular, the changes in a frame's parameter values rel-
ative to its parent(s) can easily be found. Such changes provide information, in the
'appropriate contexts' [15], about how the estimated shape of the image differs
from that of a normal chromosomal, as encoded by the model. The contexts are
appropriate because, when matching with a normal chromosome, constituent
frames tend to remain stable with respect to their parents. For example, the dispo-
sition of a chromosome's tip is most stable when specified relative to the arm mat
contains i t Likewise, the disposition of an arm is most stable when specified rela-
tive to the main body of a chromosome. Instability is significant, and may indicate
structural damage. For example, large changes in the relative position of a tip may
indicate tip breakage, and large changes in relative orientation suggests severe
bending.

Each description of the normal chromosome shape at each hierarchy level is ini-
tially set by hand. This is easily achieved by specifying model point locations and
object-based frames, and by setting all elastic connection strengths to be equal.
However, connection strengths and transformations between frames are subse-
quently updated during a period of training on example images of normal chromo-
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somes. For each example a match of the full model hierarchy is performed using
the current model (see section 4). The state of the model after matching is thought
of as a 'true' description of the image. Connection strengths in each level are then
adjusted in order to minimise the elastic energy at that level, subject to the con-
straint that the strengths sum to 1. As a consequence, strengths between model
points whose variance is large during training decreases. Weights encoding the
viewpoint-independent transformations in the model are updated so that transfor-
mations are closer to those consistent with the frame parameters in the model.

4. Model-Image Matching.

The approach taken to matching an image is to find, for each hierarchy level in
turn, the model instance most likely to have generated it. Shape information about
the match at one level serves to update model descriptions in levels below.

4.1 Matching a single model description.

At this point it helps to consider how we might generate a set of image portions
from a model description. Generation involves three stages:
(1) Create a model instance by deforming the model. The probability of picking
an instance is P(M|lVr) as in equation (3.2).
(2) Map from each model point onto the locations of 'feature generators' on the
SOMs, as desribed in section 3.1. Place a probability distribution on each genera-
tor of picking a feature encoded at some distance from it on the map.
(3) Either (a) select a generator, pick a map location from its distribution, and map
the template chosen into the appropriate image window or (b) select a unit at ran-
dom with a probability Pnoise and map its template into its image window.
(4) Repeat (3) many times.

Now consider the probability of generating a set of image portions from a model
in the manner described above. Given M = { M \ } to be the set of home locations
of model points relative to model point space, we generate a model instance by
deforming the model. Using Bayes' theorem, and just considering the best-fitting
model instance, we can approximate the probability of a generating the set of
image portions I={Ii} by

P(I\M°) = P(I\M)P(M\M°) ( 4 1 )

where M={Mjc} is the best fitting model instance.

The probability of generating a single image portion from a model instance is the
sum of the probabilities of all possible ways of generating it from the model points
(via the SOMs), or from noise. We now make two simplifying assumption, based
upon characteristics of an SOM. Firstly, we assume good vector quantisation by
the SOM. That is, the templates of units that encode image portions are 'close' to
those portions. Consequently, the probability of generating an image portion from
a feature generator is proportional to the probability of generating the best-match-
ing SOM feature template for that image portion. (A test on 1000 image portions
not present during network training had the scalar product between portions and
templates 0.97+-0.01). Secondly, we assume that the dimensions of our SOM cor-
respond to two new random variables with a uniform distribution. In such circum-
stances it is reasonable to give our feature generators a Gaussian probability
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distribution. Under these two assumptions it is now possible to write the probabil-
ity of generating a single image portion as the sum of the probabilities of all possi-
ble ways of generating the location that encodes it on the SOM from the location
of the feature generators on the SOM, or from noise. Furthermore, we can map
this probability onto model point space, and write,

= P noise + ^-Pnoise)^\exp{-^YrMk\^) (4.2)

where Yj the location of an 'image point', namely the location on the SOM encod-
ing the ith image portion mapped onto model point space. X^ are normalisation
constants, and P defines a 'range of attraction' for model points.

The cost of a fit is proportional to the negative log probability of generating the
image portions from the model and we update the location of model points in
order to reduce this energy by gradient descent. The result is

AMk=-a^wkn(Yn-Mk)+J ^

where " r ' " 6 r mk

kn
tfj M)

with Nffc being the current location of the kth model point relative to the frame for
the rth model region. An interpretation of equation (4.3) is as follows. Matching
occurs in model point space. Each model point has a radial Gaussian probability
distribution of generating an image point at some distance from it in the space.
Model points are attracted towards each image point by an amount depending on
their relative probability of generating the image point compared with the proba-
bility of generating the point from the model as a whole. Deformation is subject to
constraints imposed by the elastic connections. The relative importance of match-
ing the image points compared with minimising deformations in controlled by the
parameters a and y.

4.2 Matching a Hierarchically-Organised Model.

The previous section described how a single model description is matched to the
image. The matching procedure for the hierarchical model consists of the follow-
ing procedures:
(1) Selecting the top level in the hierarchy.
(2) Performing an elastic match for that level to maximise the probability of gen-
erating the image from the model description.
(3) Updating each frame at the current level to compensate for the match.
(4) Updating the frames in levels below via the fixed viewpoint independent trans-
formations.
(5) Repeating (2)-(4) a few times.
(6) Moving down a level in the hierarchy and going to (2) (unless at the bottom
level in the hierarchy).

The variance on model points, relating to the radii of blobs in the image domain, is
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gradually decreased at lower levels in the model hierarchy. This decreases the
range of attraction of the model points. Similarly, the elastic coefficient, y, is grad-
ually decreased, thereby reducing the relative importance of maintaining elastic
lengths, compared with matching the image points. This strategy is similar to that
employed in [13,14].

At higher levels in the model hierarchy large variances serve to smooth the energy
function, so that it contains just a few, possibly one, minima. The hope is that the
matching technique finds the global minimum at each level. Furthermore, we hope
that the shape information communicated to lower levels provides a good starting
point for matching at these levels.

5. Results and Discussion.

A comprehensive test of the matching technique is currently underway. Initial
results do suggest that the model can capture shape variability and deform to
match isolated images of normal and damaged chromosomes. In the initial experi-
ments three levels of description were employed in the model hierarchy. The
parameters [oc,p\y] were set at [2.22,0.09,0.60] at level 1, [4.00,0.05,0.30] at level
2 and [13.33,0.015,0.05] at level 3, and Pnoise was 0.10. Three iterations of the
matching schedule were performed at each level. Figure 4 shows some results of
matching with images of isolated chromosomes.

(a)

(d) (e)

(g) (h) (i)
Figure 4. Examples of clastic matching in the model hierarchy for the model of a normal
chromosome shape. Model points have been mapped down onto the image space. The
centres of circles relate to the position of model points, their radii to the standard devia-
tions on points during matching, (a), (b) and (c) show the results after matching with an
image at each of the three levels in the model hierarchy. Similarly for (d), (e), (f) and (g),
(h)(i)
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Chromosomal images frequently contain clutter or overlapping objects, and it is
important that an elastic model does not get stuck in a local minimum when
matching such images. We are currently investigating the behaviour of our model
in cluttered images. At present, our SOM only encodes the spatial location of
blobs. No information about, say, local orientation, or the position of tips or cen-
tromeres is available during matching, although such information may be
extracted from the model descriptions after matching. Our model flexes to match
spatial locations only, but in doing so may stray onto nearby clutter. We intend
making richer descriptions of local model and image regions available during
matching, by incorporating multiple SOMs into our system. Multiple SOMs fit
naturally into the current framework. We are also looking to train a neural network
to classify chromosomal objects based upon the shape information made explicit
by frames in the model descriptions.
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