
Colour and Texture in Cloud Identification:
An Experimental Comparison of Neural Network

and Bayesian Methods.

K. Richards and G.D. Sullivan

Intelligent Systems Group,
Department of Computer Science

University of Reading, RG6 2AY, U.K.
K.Richards@reading.ac.uk.

Abstract
The employment of Artificial Neural Networks to the classification of meteorological data
has been considered in previous papers and found to offer promising results. We compare
the performance of the Bayesian Classifier with two different Neural Network
architectures. The classifiers were used to segment images of cloud into four different
meteorological classes on the basis of spectral-textural measurements.

The experimental design is based on a set of 60 hand-classified images, random sampling
of which enables us to generate training and test sets. This design allows us to carry out a
repeatable comparison of the classifiers with different training and test data.

1 Introduction.

In the course of developing an automatic ground-based cloud observation system,
we have studied a number of possible methods to extract useful spectral (colour),
and textural (local spatial) features. The spectral-texture features used are an
extension of those used by Laws, from monochrome to colour images. A set of
local linear transforms is applied to each spectral channel (RGB), and a macro-
statistic taken over a 32x32 window [4,6]. Larger neighbourhood windows have
been found to offer no improvement in classification, but introduce greater errors
at boundaries between classes.

The image data consists of a set of ground-based images of the sky captured
over a period of two weeks using a colour CCD camera and digitiser. As part of a
collaborative study, the Meteorological Office provided a trained observer to
classify the images into regions of Cumulus, Cirrus, Sky and Stratus. Of
approximately 130 classified images, 60 of the most representative were selected
for this study. These images include examples of the four classes taken at various
times of day, and at various angles with respect to the sun.

BMVC 1993 doi:10.5244/C.7.47

470

This paper reports an experiment to compare two Neural Network classifiers,
and a commonly used statistical approach, under as near operational conditions as
we can obtain. Random samples of the image set were used as training data with
the remaining images used for testing. This allowed a repeatable trial of the
classifiers with different image sets.

2 Neural Networks.

Neural Networks have already been employed in the automatic classification of
meteorological cloud observation data, although to date this has invariably taken
the form of satellite data. Some of these experiments have compared Neural
Networks against statistical methods, such as KNN, Euclidean distance classifiers,
Maximum Likelihood classifiers, and have reported comparable if not superior
performance [1,5,8].

Previous studies have usually concentrated on a limited set of samples taken
from a single set of satellite images. This strategy is adequate for satellite images,
which contain relatively little inter-image variation, but ground-based data such as
ours, is far more variable. The position of the sun, the time of day, and the angle
with which the image was taken, all result in a very wide range of lighting
conditions. The experimental design uses test and training data randomly taken
from within a common set of images. Here we preselected independent sets of test
and training images to study the abilities of the classifier in the face of both inter-
and intra-image differences.

The Neural Networks we have used in this experiment are the standard Back-
Propagation Neural Network (BPNN), and a Counter Propagative Network
(CPN), both of which are well studied Neural Network architectures.

2.1 BPNN Architecture.

Neural Networks consist of a network of interconnected processing elements,
with each element having its own set of inputs and associated weights. When in
operation a cell calculates its response by summing the product of all inputs with
their weights. A non-linear transfer function is applied to this sum, giving the
actual output from the cell. The transfer function may be a simple threshold, or a
function which simulates the non-linear characteristic of biological cells.
Functions such as the Sigmoidal Logistic function (Figure 1), and the Hyperbolic
Tangent function (tanh), are frequently used. The necessity for the non-linearity,
and the potential for representing arbitrary functions with multiple layer networks

471

is described in many introductory Neural Network text books such as Hecht-
Nielsens [2] or Wassermans [9].

-1H0 -5.U

0<0

5X3 nr.o SIG =
1

(1 + expirSUM))

(1)
Figure 1 : The sigmoid response function.

A standard artificial Neural Network configuration consists of three types of
layer: an input layer, an output layer, and one or more intermediate hidden layers
(see Figure 2). In operation, a set of inputs is presented at the input layer, and
consecutive layers of the network are processed, with each layer's output forming
the input to the following layer. The final layer provides the network's output.
Alternative architectures such as recurrent networks, or networks with
connections which skip layers have been suggested but are outside the scope of
this paper.

InpLayputyer
Hidden
Layer

"

Hidden
Layer

utout
ayr

Figure 2 : Neural Network consisting of four layers.

The principal attraction of NNs is the ability to train the behaviour of a
system in response to data of known origin. A number of Neural Network training
schemes, both supervised and unsupervised, have been proposed.

2.2 Backpropagation Training.

Using backpropagation the error of the entire network to a given input is
calculated at the output layer, and each cell is given its own error term 50 u t p u t .
Usually for binary outputs this is just the difference between the target and the
output (see Equation 2).

^output = Target-Output (2)

472

This error is passed back through the input weights to the previous layer.
Each cell in this layer sums all of the errors from the cells in the output layer. This
sum, multiplied by the derivative of the transfer function, represents the error of a
hidden cell Shidden (Equation 3). This value will be subsequently passed back to
other hidden layers, and so the error is propagated.

N

hidden ~ Outhidden (1 ~ Outhidden) £ 5< ' Whidden, i£ (3)

An identical weight updating process is used in both the hidden and output
layers. The generalised delta rule learning law (see Equation 4), is guaranteed to
converge to a minimum error state (where a , is the learning coefficient, I refers to
the current layer, / refers to the current cell, j refers to the current input cell, 5#
refers to the error of cell i in layer 1, and O/, is the output of cell i in layer /)•
Although this learning law always minimises the error, it takes an indefinite length
of time to converge. For practical purposes a finite version of the rule, with a fixed
batch size N, is often used.

N k
WnfW = W?jd-a lim V 6*0

lij liJ N^fa lt «-DJ (4)

There are many possible variants on this basic architecture and learning law
with various advantages and pitfalls. Unfortunately there is no clear mechanism
for choosing between them, and the choice of learning law, parameters, and
architecture must be selected to suite each particular problem.

2.3 CPN Architecture.

The second NN architecture we have looked at is the Counter-propagative neural
network. It is a combination of two architectures, KohOnen's self-organising
topographic map, and Grossberg's "Instar/Outstar" structure [9]. Hecht-Nielsen
developed the CPN in order to use KohOnen's self organising map to learn explicit
functions [2].

We have used the CPN in its forward-only variant. The learning phase of the
KohOnen layer partitions the input space into clusters of similar input vectors. The
Grossberg layer is then trained to map the KohOnen Layer onto the desired
classifications (see Figure 3). When fully trained it functions as a near-optimal
lookup table. During training the input vector consists of both the input data X,
and the target output Y. The network is trained to produce the same output as

Input
vector

KohOnen
Layer

Grossberg

CPN

473

X'

Y'

Figure 3 : The CPN: During training both the class and input data are presented to the
network. The Network is trained to produce the same output as input. After training
only the input data needed to be supplied to obtain it's associated class.

input, building an association between the data and its class. When fully trained,
the input data alone is sufficient to identify its class. The simplicity of this training
mechanism has made the CPN very attractive for problems such as image
compression.

2.4 Training the Kohonen Layer.

A KohOnen Layer consists of an array of cells organised in a 2-D spatial array
(although higher dimensional structures are also possible). The array is cyclic, so
its local neighbourhood extends across borders, as shown Figure 4, where each
shade of grey represents a constant cyclic distance from the white cell.

< M M h-< M •—(>

•••-(M M M M M »—(•

Cyclic connections

CyclicDistance = min(dx, Width - dx) +
min(dy, Height - dy)

where

dx = abs(X1-Xp
dy = a b s (Y - Y)

(?)

Figure 4 : The Kohonen layer. The local neighbourhood connections are cyclic.

Each cell in a KohOnen layer has its own normalised weight vector, which is
initialised to a set of random values at the start of training. The response of a cell
is simply the dot product of this weight vector with the input vector (see Figure 5).
The KohOnen layer works on a "winner takes air process. After all the cell's
responses are calculated, the best responding cell has its output set to 1, and all the
remaining cells are set to 0.

KohOnen's learning law considers the input vector and the weights vector to
represent points on a hyper-sphere (see Figure 5). Adjustment of the weights to

474

improve the match with the input vector simply involves the addition of some
fraction of the difference between the input vector to the original weight vector.
This moves the weights closer to the input vector. The fractional adjustment of the
weights is controlled by a learning parameter OC.

Response Z(= W^I

Kohftnen's Learning Law

Wiew = W°i
ld + ax(I-W°i

ld)xZi (9)

Figure 5 : Training the Kohonen layer. The winning cell and its neighbours all have
their weights adjusted to look more like the input vector.

During training, weights are modified in a local neighbourhood around the
winning cells. Initially this neighbourhood covers virtually the entire network, but
as training proceeds the size of this neighbourhood is reduced until only the single
winning cell's weights are changed. By this use of lateral excitation a smooth
topological map of the input space is formed, and the feature space is distributed
across the entire network. Variants on the KohOnen learning mechanism, such as
cell conscience or a local neighbour bias, can ensure a homogenous network [2].

2.5 Training the Grossberg Layer.

As described earlier the KohOnen layer will have one cell responding. The
Grossberg layer contains a set of weights connecting its cells, to the outputs of the
KohOnen layer. If the output is non-zero then the Grossbergs weights are changed.
The amount of adjustment is proportional to the difference between the weight
vector and the desired output. In the case of the CPN this is the original input
vector.

Output •• = Output.. + a (Input- Output-)
ij ij J iJ (10)

The weight connecting Grossberg cell j to KohOnen cell i is adjusted to look more
like the input (as with the previous training mechanisms, a learning parameter OC
is used). The weights should converge to the average values of the desired outputs,
for all the input vectors which cause the KohOnen cell to fire, thus the KohOnen
layer generates clusters in the feature space, the purpose of the Grossberg layer is
to map these clusters into the desired outputs.

475

3 Bayesian Classification.

The performance of the two Neural Networks were compared to that of a
Bayesian classifier, which is widely used to classify multi-source data. Although it
makes the assumption that the class distributions are multi-normal, it can be used
successfully without any guarantee of the normality of the feature distributions
[7,10]. The Bayesian classifier uses a class distance measure based upon the class
mean and the class feature covariance

Bdist. = ((f- vt) •C~1*(f- v.)) + log (|CJ)

where/is the vector to be classified and v(- and C, are the mean feature vector and
covariance matrix for class i. When a distribution is multi-modal, or is heavily
skewed, the Bayesian Classifier is expected to perform poorly, and other non-
linear approaches such as Knn classifiers and Neural Networks may perform
better [1,5].

4 Random Sample Trial.

Ten random sample sets were created from the original set of 60 images, with each
sample consisting of 30 images. Each set provided training data for the classifiers,
with the remaining images used for testing the classifier's performance.

The images were processed to extract spectral-texture features similar to
Laws Texture measures [4]. Each feature is the local energy of one of nine 3x3
linear transforms, applied to each colour channel separately. This simple colour
extension to the monochromatic texture analysis used by Laws [4,6], provides a
total of 27 features. Other researchers such as Unser [7], have used Principal
Component Analysis to identify sets of local linear transforms with better
discriminating power, however similar experiments with our data showed no
apparent improvement in classification.

Since there were limited examples of cirrus available in the data set we
biased the random samples to ensure that each training set contained some
examples of cirrus. The number of samples for each image was also biased so that
the relative number of examples for each class would be the same. This limited
selection of cirrus images accounts for much of the poor classifier performance.
Future data collection exercises will concentrate largely upon increasing the
number of Cirrus examples.

476

4.1 Results of Classification.

The accuracy of the classifiers was estimated on the basis of the data from the
images not used in the training. This gives us a measure of the classifiers ability to
generalise and cope with unseen data. If the relative performance of the classifiers
is consistent over all training/test sets then we might be confident that this is true
for the techniques in general.

The results are shown in Table 1, ordered left-to-right on the basis of the
Bayesian classifier. The comparative performance can be seen more clearly from
the graph in Figure 7.

Bayesian Classifier
BPNN

.-.-.vjuw-'.^'t ' U V

,»waw

90.0

80.0

70.0

60.0

50.0
Independent trials Mean

Figure 6 : The right hand lines indicate the mean ±1 sd of the classifier performance.

Classifiers

Bayesian

BPNN

CPN

Performance on 10 independent trials

59.4

58.4

56.0

59.9

70.1

64.0

65.4

73.4

62.7

66.7

68.9

54.0

69.3

76.3

65.4

70.2

80.5

65.4

73.2

78.6

65.1

73.5

80.7

62.7

77.4

87.7

68.4

84.0

84.0

70.1

Ave.

69.9

75.9

63.4

Table 1 : Comparison of Classifiers on random training and test set pairs

The BPNN is consistently much better then the CPN. This inferiority has
been recognised by the CPN's creator Hecht-Nielsen [2], who advocates that since
it is so simple to build, and quick to learn, it should only be used to generate rapid
prototype NN solutions, with the final implementation using BPNN or some other
architecture.

The BPNN also appears to be perform significantly better than the Bayesian
approach. Out of the ten trials, nine show an improvement between 2.2 and
10.3%. In the remaining trial, which also happens to be the least successful trial,
the BPNN was 58.4% correct compared to 59.4% for the Bayesian Classifier.

477

5 Conclusions.

The Neural Network approach has been put forward because of its independence
of any a priori model of the class distributions. This means it can accurately
model statistical distributions, for which the normal assumptions made by the
Bayesian classifier are invalid. For nearly all of the independent trials the BPNN
performs better than the Bayesian classifier.

An insight into the characteristics of the classifiers can be gained by
examining their performance with respect to each individual class. The greatest
difference in performance lies with cirrus, the BPNN performs on average 20%
more accurately than either of the other classifiers. This might be explained if the
Cirrus feature distributions were markedly non-normal, however it is unclear
whether this is due to the nature of Cirrus features, or an artifact of the limited
number of cirrus examples.

The performance of the BPNN is slightly worse than that of the Bayesian
classifier when dealing with sky. The majority of the BPNN error is due to
mislabelling sky as cirrus. This is most probably a necessary trade-off which
allows BPNN to perform much better on cirrus than the other classifiers. Even
disregarding the results of the classification of Cirrus, the BPNN performance is at
least as good as the Bayesian.

100.0
BUI Bayesian

• BPNN
{"I CPNN

Cirrus Cumulus Sky Stratus
Figure 7 : The graphs represent the average performance of the classifiers
(±1 sd), with respect to the individual classes.

It appears from our results that Neural Networks do offer a very useful means
of classifying images without the need for a statistical model of the features,
however the training parameters require careful selection. The major disadvantage
of using the BPNN is the lack of clear strategy for choosing between the many
training paradigms. Different problems appear to require different training
mechanisms, or different parameters for the same training mechanism. Finding
the best parameters, and training algorithms is a matter of experience, trials and
patience.

478

Acknowledgements: This work was carried out with support
from the Science and Engineering Research Council, under CASE
award 90593345, in collaboration with the Meteorological Office.
Thanks are due to HJ. Grech-Cine for many useful discussions, and
practical assistance with the Neural Network software.

6 References.

[1] Bediktsson J, Swain P.H, Ersoy O.K, "Neural Network
Approaches Versus Statistical Methods in Classification of
Multi-source Remote Sensing Data", IEEE Transactions on
Geoscience, and Remote Sensing, Vol. 28, No. 4, July 1990, pp
543-552.

[2] Hecht-Nielsen R, "Neurocomputing", Addison-Wesley
Publishing Company, 1989.

[3] Hinton G.E, "Neural Networks: The 1st SUN Annual Lecture in
Computer Science at the University of Manchester", July 1989,
Lecture slides.

[4] Laws K.I, "Textured Images Segmentation", PhD dissertation,
University of Southern California, 1980.

[5] Lee J, Weger R.C, Sengupta S.K, Welch R.M, "A Neural
Network Approach to Cloud Classification", IEEE Transactions
on Geoscience and Remote Sensing, Vol 28, No. 5, September
1990, pp 846-855.

[6] Richards K, Sullivan G.D, and Jones D.W, "Colour
Segmentation of Cloud Image Data.", World Meteorological
Organisation Technical Conference on Instruments and Methods
of Observation, Vienna, 1992, pp 295-299.

[7] Unser M, "Local linear transforms for texture measurements",
Signal Processing 11, 1986, pp.61-79.

[8] Visa A, Valkealahti K, Simula O, "Cloud Detection Based on
Texture Segmentation by Neural Network Methods", IEEE
International Joint Conference on Neural Networks, Volume 2,
1991, pp 1001-1006.

[9] Wasserman P.D, "Neural Computing: Theory and Practise", Van
Nostrand Reinhold, 1989, pp 63-71.

[10] Young T.Y, King-Sun F, "Handbook of Pattern Recognition and
Image Processing", Academic Press Inc., 1986, pp22-24.

