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Abstract

Determining the motion of a camera from its image sequences has so far
proved very difficult, and no practical algorithms have been found for freely
moving cameras. This novel algorithm is based on motion parallax, but uses
sparse visual motion estimates to extract the direction of translation of the
camera directly, after which determination of the camera rotation and the
depths of the image features follows easily. This method can also detect and
reject independent motion, and provide a measure of the uncertainty of its
estimates.

1 Introduction
Relative motion between a viewer and a scene provides a visual cue for the deter-
mination of the scene structure and the viewer motion. If the camera motion is
known to a reasonable accuracy, only the depths in the scene need be computed
(the distances from the camera centre to the points in the scene). However, many
systems would benefit from using a freely moving camera with no external motion
sensors, which requires that the visual motion must be decomposed to give the
camera motion and the scene structure.

There are two common methods for estimating the camera motion from an
image pair or sequence. One class attempts to find both the translation and the
rotation of the camera simultaneously. For instance, the 3x3 essential matrix
[12, 20], a linear representation of the epipolar constraint, can be decomposed into
the five egomotion parameters. However this estimation of the mutually dependent
variables of the matrix makes no reference to this and it can introduce excessive
errors [5]. This approach particularly fails to distinguish between rotations and
translations perpendicular to the optic axis, especially when perspective effects are
small. The other class of methods finds approximate solutions for one component,
either the rotation [16] or the translation [1, 10], by assuming that it is dominant.
This is much more direct, but the solutions tend to be biased when the other
component is significant. Extracting one component of the egomotion exactly
would avoid the disadvantages of both of the above.

It has long been known that the relative visual motions of coincident points can
be used to cancel the rotational part of the visual motion, and therefore extract
the visual motion due to the viewer translation only [7, 13]. This effectively allows
the camera motion to be treated as a pure translation, with all visual motion
towards or away from the epipole, the intersection of the direction of motion with
the imaging surface. The absolute magnitude of the camera translation cannot
be found, because of the speed-scale ambiguity, though it can be expressed in
terms of the scene depths. Once the epipole is known, the camera rotation can be
found from the component of the visual motion orthogonal to it. Unfortunately
motion parallax has many shortcomings, particularly the need for dense velocity
field measurements at sudden depth changes [8, 17].
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Here we present a method that will find the epipole independent of the camera
rotation and point depths and that does not require the instantaneous alignment
of features or dense image velocity measurements. A method of calculating the
uncertainty of the estimates is also presented. Section 2.1 presents the affine mo-
tion parallax algorithm, 2.2 explains the novel use to extract the epipole, 2.3 shows
how uncertainty analysis can allow optimal estimation, and 2.4 how the formu-
lation of the algorithm can be used to reject spurious visual motion information.
The results of an implementation using sparse visual motion information are then
presented in Section 3.

2 Theory
2.1 The Affine Motion Parallax Algorithm
This algorithm measures motion parallax without requiring the instantaneous
alignment of features by using affine (linear) approximations to projection. Below
is given an introduction to the notation, a description of each theory, and then the
algorithm that combines them. It is then shown how this can be used to find the
epipole from only sparse image velocity measurements.

Visual Motion: Stationary features points in space are given in the camera
coordinate system by vectors X_ measured from the camera (projection) centre.
However only the directions of these vectors can be measured by a camera from
a single position, and so the image positions of the points are represented here
by the vectors to the intersections of X_ with the unit sphere, Q, and the image
velocities by their velocities, Q. (An alternative is to use a projection plane,
which is less elegant because involves the introduction of an extra variable, the
plane normal.)

q ( 1 )

As the camera moves with translational velocity U_ and angular velocity Q (also
in camera coordinates), the relative positions of the points in space change

i = -nxx-f/ (2)

(x is the symbol for the vector product), and this causes the image points to
move as well. Differentiation of (1) and substitution into (2) gives [2, 15]

Q = -QxQ-(Qx\u_)xQ (3)

where r — \X_\, the depth. This clearly shows that the visual motion is made up
of two components, one depending on the translational velocity of the camera
and the scene structure (depths), and one depending on the rotational velocity
and only the image positions.

Motion Parallax: If two points in space, a and b, project to the same point on
the imaging sphere momentarily, then their image velocities will have identical
rotational components (from 3), and the difference in their image velocities, AQ,
will depend only on the translational velocity of the projection centre and on
their image position and depths. This is called motion parallax [13].

AQ = (£,-5*)l2.=24=fi (4)



381

= (QxtOxQ(---) (5)
' 6 'a

= (i-QQT)U(---) (6)
"6 "a

where QT is the transpose of Q. The epipole, Q_B is defined by the direction

of the camera velocity vector U_, and so they are parallel (U_ x Q£ = 0). It

therefore follows from (6) that

(AQXQ).Q£ = 0 (7)

This implies that the epipole is constrained by each measurement of AQ to lie on
a great circle of the unit projection sphere (of axis AQ X Q), and therefore two
measurements in different parts of the visual field can determine its direction.
Unfortunately implementation requires sudden depth changes and dense 2D
velocity field estimates (eg. from a continuous measurement method or dense
corners). The solution will be ill-conditioned if:

• the points used to calculate the parallax are not close to coincident

• there is no significant depth change between the points, giving only a small
velocity difference, or

• the field of view is too small to allow good triangulation on the epipole.

Affine Transformations: Weak perspective [18] makes the assumption that
there is a linear {affine) transformation between the positions of the points in
3D and their projections. From small perturbation analysis of (3), it can be
seen that the image velocity is in general a non-linear function of both the
image position,Q, and the scene depth, r, and therefore, for the visual motion
to vary linearly, the visual region considered must be small and contain small
depth changes.
A point in a certain plane in space will therefore have an image velocity that is
a linear function of its image position only. This affine transformation can be
determined from, for instance, the visual motion of a minimum of three points
in the plane, or the deformation of a closed curve in the plane [2].

Affine Motion Parallax: Conventional motion parallax uses two points instan-
taneously aligned, but this algorithm uses four nearby points. The motion par-
allax comes from one real point, and one virtual point, taken to be momentarily
behind or in front of the real one but at a different depth. The movement of this
virtual point is calculated by assuming it is on a plane defined by three other
nearby points. The algorithm therefore allows much sparser features to be used
than conventional motion parallax methods. This implementation used cor-
ners, with the virtual partner for each provided by its three nearest neighbours
(see figure 1), but future work will investigate using closed curves to define the
affinely deforming planes, and using the curves centroids to define the parallax
points.

This algorithm was originally used to determine the axis of rotation of an
object in front of a stationary camera [3]. Here it is extended so that a number
of measurements of affine motion parallax from distinct small linear regions can
determine the epipole.
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Figure 1: The Affine Motion Parallax Algorithm
Point. P* is defined to be in the plane defined by points A,B and C and momentarily
coincident, with point P in the image (left). When the viewpoint of the scene changes the
displacement of P* is defined by the locally linear deformation of the image of the plane,
which can be determined from the displacements of A,B and C (right). The difference
in the displacement of the real point P and the virtual point P* (resulting from their
different, depths) is the motion parallax.

2.2 Epipole Determination
Methods that attempt to extract the epipole that rely on the small global per-
spective effects tend to suffer badly with noisy data. Longuet-Higgins [13] showed
as above that two or more local measurements of motion parallax can determine
the epipole but true parallax is difficult to measure. Using the weak perspective
assumption globally results in parallel motion parallax vectors [11], as it is only
valid for small fields of view. However weak perspective assumptions can be used
in a number of small regions of a wide view.

In this paper, a novel method is presented that extends the use of affine motion
parallax to a number of small neighbourhoods in a full perspective image, so that
the relative velocities can be used to determine the epipole. The epipole can be
obtained entirely from geometric construction on the image plane, though here
it is mapped onto the sphere to avoid infinities. Each neighbourhood generates
a motion parallax vector which provides a great circle constraint on the imaging
sphere on which the epipole must lie (7), using only sparse visual motion estimates.
Two or more separated cases can determine the epipole exactly at the intersection
of their constraints. The camera rotation can then be found by a least-squares
estimate from the visual motion perpendicular to the epipole, and the scene depths
can then be determined from the visual motion towards the epipole not accounted
for by this rotation.

2.3 Uncertainty Estimation
The feature measurement, errors on the image plane determine the image velocity
measurement uncertainty, which then in turn affects the rest of the calculation
on to the motion parallax vectors and then the epipole estimate. If all the image
positions are represented as normalized 3D vectors to the projection sphere, then
all the calculations can be expressed in standard vector arithmetic. Assuming that
the uncertainty on each vector (and scalar) in the calculations is small, additive
and gaussian, then it can be represented by a covariance matrix [9] which can
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be calculated with the estimated value. The significance of the motion parallax
vectors can now be defined in terms of their uncertainty estimates, for instance.
If any point is found to have no significant affine motion parallax, it may well be
in the plane of the three points providing its virtual pair, and a new basis can be
chosen if necessary.

Epipole estimates can be generated from the normalised vector product of
every possible pair of constraint planes normals (axies of the great circles) given
by the motion parallax (7). The optimal estimate is then the weighted sum of
these estimates with the lowest predicted uncertainty. Intuitively those estimates
which have the greatest uncertainty should receive the smallest weights. However
the exact weighting depends on the choice of the scalar uncertainty measure to be
minimised (see the appendix for the calculations in detail). l

Independence of all estimates is assumed during the calculations. However
where estimates or constraints come from shared original measurements are com-
bined, independence is lost. Here, the weights calculated for the constraints assume
their independence, and therefore in reality will be only approximately optimal.
Also the scale of the uncertainty will be wrong, and so the number of times the
measurements have been overused on average is taken as the scaling factor for
the covariance matrix of the result. (For instance, the estimation of the epipole
combines ^N(N — 1) vector products from only N constraint normals, so the
calculated variance for the epipole is multiplied by ^(N — 1) to compensate.)

2.4 Detecting Independent Motion
Independent motion is when a point in the scene is not stationary in 3D space, and
therefore has a different motion relative to the camera. Incorrect visual motion
measurements (caused by bad matching or tracking of features, or by indepen-
dently moving objects or spurious features) can be removed at the constraint
fusion stage. Starting from the best estimate available from two constraints, only
those constraints that agree (to within their uncertainty bands) are included. If
too few constraints agree then a new initial estimate is needed. Otherwise all
those features that were not part of any included constraint can be rejected, and if
necessary the calculation can be repeated to improve its accuracy. Other ways of
recognizing bad features include checking that their depth is positive and changes
smoothly.

3 Implementation
3.1 The Measurement of Visual Motion
This algorithm requires image velocities or displacements at a number of points.
Corners are 2D image structures and therefore those points in the view that can
be tracked most easily. The corner detector used in this implementation is based
on Tomasi [19] and Harris [6], ie. looking for small regions of pixels with high
intensity gradients in all directions. These algorithms will recognise all forms of

'This estimate has also been made in other work, usually in the context of finding vanishing
points, and Magee and Aggarwal [14] used a similar system. Kanatani [9] and Collins and Weiss
[4j found the smallest eigenvalue of the sum of the outer products of the normal vectors, but by
this method the important optimization requires an initial estimate of the epipole, and not just
the assumption that they are all reasonably accurate. Others (eg. Hildreth [^) have found the
maximum of a discrete histogram on the sphere, with each 'bin' scoring for each constraint plane
that approximately intersects it, but achieving accuracy and producing an uncertainty estimate
would require a very dense array of bins and therefore excessive computation.
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2D feature and can grade them for localizability, whilst only taking one deriva-
tive of the intensity field which increases the immunity to camera noise. Tracking
schemes to determine the displacement of each corner in the next frame that were
considered for real-time implementation include finding corners and then match-
ing them using their proximities and similarities [6], using intensity gradients to
perform an iterative search [19], and making SSD (sum of the squared differences)
comparisons. However, reliable tracking is still a difficult problem, and the benefits
of smooth real-time motion prediction are lost to an implementation for discrete
views. Figure 2 shows the corners found on the first image of the sequence.

Figure 2: The approach to Kings Chapel North Gate (Frame 1) showing the corners
found by Tomasi's algorithm [19].

3.2 Experiments
An epipole finder for pairs of images, which uses the affine motion parallax

algorithm given above, was implemented using first hand-picked corners, and then
corners found using the detector described above (section 3.1) (but matched by
hand to avoid the correspondence problem). The uncertainty tracking system
was also implemented starting from a priori estimates of the corner measurement
uncertainties, allowing an optimal estimate of the epipole to be found. The re-
sults showed that the algorithm produced a robust epipole estimate, within its
calculated uncertainty margin and usefully accurate.

The sequence below shows estimates of the epipole being made from a sparse
set of corners. There is a realistic amount of camera rotation between the frames as
well as a translation towards the gates. It can be seen that the algorithm is not only
accurate with only a dozen features, but also fails gracefully as the information
given reduces further. Since the reliability of the epipole measurement is also
estimated, Kalman filtering of the frame pair estimates would be simple. The
figures show an ellipse centred on the optimal estimate indicating the standard
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(1)

Figure 3: The approach to Kings Chapel North Gate (Frames 1-6) showing the feature
movements from the previous frames and the epipole estimates with their 1 s.d. ellipses.
The sparse features in frames 3 and 4 still provide good epipole estimates, but the
decrease in the information content, caused by the frame 5 having only one feature out
of the plane of the wall, is also clearly demonstrated by the increased uncertainty. The
last frame contains only points on the wall and can therefore provide only one constraint
plane causing the uncertainty to explode.
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Figure 4: The approach to Kings Chapel North Gate (Frames 4 &; 5) showing the affine
motion parallax directions calculated for the features with length representing certainty
(top), and the constraint planes they provide, plotted as great circles on a hemisphere, and
the optimal estimate of the intersection, allowing for the uncertainties of each constraint
(bottom). Again the decrease in information content to frame 5 is evident, with only one
constraint plane found.

deviation assuming that the feature position estimates error is gaussian with a
standard deviation of 1 pixel.

Though small visual regions are being used, the depth changes in many triplets
that form the affine bases are too large for the affine approximation to be very
accurate. However the estimates of the affine motion parallax they provide will
be considerably more accurate than could be obtained from pairs of points, as is
done in other parallax algorithms [8, 17], or by assuming that there is no rotation
[1, 10]. The discrete motions are approximated by velocities in the calculations.

Figure 3 shows the sampled image sequence, grabbed from videotape. The
first three frames have plenty of points and variations in depth, but some of those
detected are on independently moving objects (people). The later frames have
decreasing numbers of points and depth to demonstrate the gradual failure to find
the epipole. Figure 4 shows the affine motion parallax calculated from two frame
pairs on the borderline of having insufficient data points.
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3.3 Discussion
Some of points chosen in the frame sequence are on independently moving bodies
(people) but none can be detected as such by the epipolar constraint (translation
causes no visual motion perpendicular to the epipole) because they all move in a
plane with the camera. This is very often true for scenes like this: only points that
are not at eye-level and are not travelling in the same directions the camera, such
as the feet of someone crossing the road, can be detected in this way. All points
shown are used in the calculation to show its robustness.

In the later frames the independent points are not present but neither are
others leaving an even sparser point set. Despite this the algorithm still recovers
the epipole accurately (even when there is only one strong constraint (frame 5)
though it is less certain) until only planar points remain (frame 6).

4 Conclusions and Summary
Presented above is a method of extracting the epipole exactly from sparse, noisy
and corrupted points by decomposing the image velocities into their translational
and rotational components. Once this has been determined, camera rotation and
the relative point depths can also be found. The algorithm also provides an esti-
mate of its accuracy, which allows it to be combined optimally with other infor-
mation and its reliability to be gauged. This method is applicable to any problem
where the camera motion is unknown, as it provides an efficient and elegant decom-
position of visual motion information. Since it fails gracefully and provides uncer-
tainty estimates, it is considerably more practical than essential matrix methods
[12, 20] which can produced dramatically wrong results with noisy data. Results
of an initial implementation using corners back up these claims.
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A The Optimal Sum of Estimates
Let i be the optimal estimate of £. It is found from a number of estimates x,-
by taking the weighted average of them, x = Ylwi?U (where Y2 «;,• = 1), that
minimises the expected standard deviation a. The estimates are assumed to be
unbiased, so that their expected value E\xJ[ = x, and to have only independent
small additive gaussian noise, x,- = x + AX,-. This is represented by a known
covariance matrices, V[£i] = E[Ax_tAxJ]. cr2 is defined as (T\ + (Ty + o\, ie. the
trace of V[x\, and <r? is the trace of V'[x_;].

E[i] = E

a2\i] = E = E

We want, to minimise c2[x] = V wfaf given that £^ u'> — 1-
Therefore minimise C = Yl(u'fa'f) — HY2 wi ~ 1) for each u;,- (Lagrange)

7T-5 and Wj =

Each estimate is weighted proportional to the inverse of its variance, \


