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Abstract
A problem often encountered with multiresolution segmentation algorithms is that small or thin
features of an object become lost. This is particularly evident in linked-pyramid structures and a
method is required to restore these features. This paper shows that simple adaptive isotropic
and non-isotropic filtering based on the inter-region signal-to-noise ratio can be used to
iteratively re-establish the lost features. It is also shown that boundary placement is also
improved and a balance between class certainty and boundary placement is achieved. A number
of results are presented for synthetic and real images.

1.0. Introduction.

Multiresolution pyramid structures have become a popular platform for segmentation
algorithms in recent years [1, 3, 6, 7]. However, one major problem with these
structures is that small or thin features become lost due to the smoothing effects of the
pyramid structure. Because of this problem a lot of research has tended to consider
compact regions and objects only. When objects are not compact, some form of
restoration is required after the initial segmentation has taken place. In this paper, an
extension to a new algorithm presented in [6] is described that iteratively restores the
lost regions even when the inter-region signal-to-noise ratio is low. Further
enhancements are described using non-isotropic techniques that establishes the
minimum standard deviation from a set of eight possible directions.

2.0. Multiresolution structures

The first application of multiresolution data structures to image segmentation problems
was discussed in [1, 3]. In these references the idea that a noisy image could be
smoothed using a linked-pyramid data structure was introduced. Smoothing methods
until this time included local averaging where a pixel becomes the average of itself and
its neighbours. This tends to blur edges as a pixel site near a boundary will become the
average across the discontinuity. To resolve this, Hong et al. [4] suggest a cooperative
process to perform smoothing and segmentation concurrently. The method is based on
defining links between different resolutions of the image. At low-resolution versions,
region interiors are less noisy. Intuitively, in an image comprising grey scale plus
noise, the noise standard deviation will be halved at each lower resolution. The
authors point out that the lower the resolution, the less likely it is that a pixel is
contained in a single region and that at lower resolutions most pixels will overlap two
or more regions.
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The linked-pyramid data structure is a conical set of layers as shown in Figure 1. Each
layer has a two-dimension array of nodes which contain properties of the image, such
as, average grey-level. At the highest resolution is the image with n x n nodes
representing pixel grey-levels. At the lowest resolution there are nodes (up to four)
representing regions of the image. If a layer at level m has n x n nodes then a layer at
level m-1 (a lower resolution) has n/2 x n/2 nodes. A node in this m-1 layer, called a
father, can link to a possible sixteen nodes, called children, in the m layer. A child
also has four possible fathers. Therefore, there is an overlapping by 50% in each
spatial dimension from layer m-1 to layer m.

Let L = {ls} and Y = {ys} be the set of labels and pixel grey values respectively at pixel

site s where ls e A where A is a finite set of labels and s e D where Q. is the image
support. The image space comprises k regions where k=l...n and where n=2 in this
work. Each node at spatial position (i,j) at level p in the pyramid is defined as v(i,j,p)
and the node properties at spatial position (i,j) at pyramid level p are defined as
P(v,i,j,p)). In this work these properties are the average grey-scale value but for other
image models, such as a quadric model, properties are higher order spatial moments.

A boundary node is one that has one or more of its neighbours as a different class. The
boundary nodes of a region with label L at level p defined by the set B(p,L) and those
nodes adjacent to boundary nodes B'(p,L). In this work the set of nodes considered for
relabelling at a level p is the set of nodes B(p,L) u B'(p,L).

The segmentation algorithm iterates between estimating region properties and
minimising a log-likelihood function via generation of different pyramid labellings.
The algorithm is based around the linked-pyramid data structure. It proceeds in a top-
down fashion minimising an error function calculated from the set of moments at the
roots of the pyramid. The algorithm starts by setting up the linked-pyramid layers'
node values. A node at level n is the quadtree average of a group of nodes at level n+1
[7]. The algorithm starts at the top of the pyramid and raster-scans through each layer.
At each node the son-father link is altered if the error is reduced. In this algorithm
there is a stop layer that is pre-defined. This stop layer determines the number of
layers involved in the initial segmentation, in other words only a small pyramid is
processed initially. When no more son-father links are altered the algorithm proceeds
to lower levels. The first small pyramid is then fixed and lower levels are processed in
succession until each level converges. When no more links change, an adaptive
Gaussian filter is used to improve boundary certainty. The filter is adaptive since it
uses the inter-region SNR of the non-boundary sites, that is, where class certainty is
high. This process of iterating between linking and filtering continues until the image
layer is reached. The class values are then propagated from the root nodes to produce
the segmented image. A detailed description of the implementation of the algorithm is
given in reference [6] where applications to both grey-scale and texture segmentation
are described.

3.0. Adapitve node filtering
The algorithm outlined in the previous section produces compact segmentations.
However, as the amount of noise present in the image increases then the location of the
boundary becomes more uncertain. The aesthetic nature of the boundary can be
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improved using an ad-hoc method, for example, a method that minimises the number
of boundary nodes will remove small clusters of nodes and generally smooth the
boundary. A more intelligent approach is to develop a method dependent on the data
that combines the spatial and statistical properties of the pyramid. Thus, the boundary
can be improved using a smoothing filter based on the local region properties to
generate new node data followed by a re-classification stage.

Figure 1. Linked-pyramid structure.

The justification for using such a filtering technique was discussed by Home [5]. The
author states that the segmentation process should be based on spatial and statistical
properties and comments that the problem is ill-posed. The filtering process must also
be capable of re-introducing small features that have been lost due to the smoothing
effect of the multiresolution pyramid. Since the algorithm iterates in a top-down
fashion then if an artefact is lost at a higher pyramid level it is impossible to restore it
without a filtering stage. For example, if an object comprises two large regions joined
by a thin region then they may be segmented as two isolated regions. This suggests an
iterative smoothing-re-classification of the set of nodes on or adjacent to the boundary.

Consider a piece-wise flat image containing a single object. If the image is noiseless
then it is simple to determine the location of the boundary as it is the discontinuity
between the foreground and background. When noise is introduced the exact location
of the boundary becomes more difficult to discern.

For the piece-wise flat model an adaptive Gaussian filter was used. It is adaptive in the
sense that the width of the Gaussian is determined from the inter-region SNR. For a
high inter-region SNR the filter has a sharp profile, the resulting value being
dominated by the node value itself. The filter profile is shown in Figure 2. When the
inter-region SNR is low and therefore the uncertainty is high the filter profile is broad
and the resulting node value is a weighted average of its surrounding neighbours.

The inter-region SNR is defined as

u - u I l -r-,
\\> = . m '- where uk = T—TT Vy s and where m and n are two region labels. (1)
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and ak = T—r2 l(y s-uk)2 where Rk = {S:SE Rk,s<?(B(p,L)uB'(p,L))} is the set of
| R |

nodes internal to region R, . (2) Let the kernel for a node v(i,j,p) be defined as

where r = A/(i-i')2+(j-j')2 (3)

The term O2(\|/) used in [5] was also used here and is given by O2(y) = 3.0/ \|/2 (4)

This approach is similar to that used by Home in [5]. The amount of smoothing is
limited by the kernel which was set to 5 x 5 and the performance of the filter is such
that for V|/ = 0.5 the smoothing is maximal while for a x\i = 4.0 there is no smoothing
at all. The procedure for boundary refinement is shown in Figure 3.

The first stage involves convolving the filter defined in Equation 4 with the existing
properties of a layer, P(v(i,j,p)) to give new property values P'(v(i,j,p) as

p(v(i,j,p)) = V V p(v(i',j',p)) xhiJ(i',J,\|/) where the summations are over the filter

support (5). Nodes are then assigned to the class that is closest in property space. For

the two-class case this is if p(v(i,j,p))-um < p(v(i,j,p))-un then v(i,j,p)sRm

else v(i,j,p)eRn (6)
This two stage procedure iterates until no son-father links change. In this way regions
can be grown if small areas have been lost in the segmentation process.
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Figure 2. Adaptive filter profile. Figure 3. Algorithm for boundary refinement.

The preceding discussion has described an iterative filtering and re-classification
process to improve boundary certainty and to grow small regions lost by the
inflexibility of the linked-pyramid structure. This occurs when a region that is small
becomes detached when the SNR is low and nodes are statistically in the wrong class
due to noise. Another cause of lost regions is due to the multiresolution nature of the
linked pyramid structure, because lower resolutions of the image, filter the small
features in the high resolution version. These regions and features need to be grown
and the filter techniques described above are used for this purpose.
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4.0. Non-isotropic filtering
As discussed earlier, small features are often lost when noise is present. This is due to
the smoothing effect of the pyramid and to some extent small regions are re-introduced
by the use of the iterative boundary refinement technique discussed in this section.
These small regions or thin structures can be improved using directional filters which
are required since the isotopic filter used in the boundary technique earlier over-
smoothes the thin structures. A suitable technique to overcome this problem is to use a
set of directional filters such as those discussed by Dixon [2] where a set of eight
directional filters are as shown in Figure 4 for a 5 x 5 mask size. The horizontal filter
will provide data that crosses the regions and therefore the standard deviation of the
grey-scale data will be high. For the vertical filter, the data will all be from one region
and thus the grey-scale data will have a low standard deviation. By selecting the filter
that produces the lowest standard deviation, an averaged value for the boundary node
can be established which represents a closer approximation to the class model
parameters. The node can then be assigned to the class that is closest in distance
space.

Referring to Figure 5, the algorithm proceeds as before and after the boundary
refinement filtering an iterative-directional filtering algorithm is applied. This finds
the direction with the lowest standard deviation and convolves this filter with a one-
dimensional Gaussian mask. The class of the node is then established. When this
stage has converged, that is, no more son-father links are changed, another isotopic
filtering stage with a reduced width Gaussian filter is required to remove isolated
pixels to improve the ragged boundary produced by the non-isotropic filtering. The
relation between the filter width and the inter-region SNR for the directional filtering

is o2(\j/) = 5.0/ \j/2 and for the isolated pixel removal is o2(\|/) = 1.0/y2, the relationship

for the initial boundary refinement is as before, these being set experimentally [5].
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Figure 4. Eight directional filters. Figure 5. Algorithm for growing thin structures.

5.0. Results

The algorithm has been tested with various 128 x 128 x 8 bit images. The first is a
synthetic image shown in Figure 6 which has a SNR = 2.0 and Figure 7 which has a
SNR - 1.0. In both of these images the problem of uncertainty can be seen and it is
difficult to determine the exact boundary location. For these segmentations a pixel

error measure can be defined as E = |C(p,l)|/|B(p,l)| (7) where C(p,l) is the set of
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misclassified pixels and B(p,l) is the set of boundary nodes which is taken as the object
in this case where p is the layer and 1 is a labelling. Figure 8 shows the resulting
segmentations without boundary refinement where at the bottom level and the next
level up, the boundary is noisy. When the boundary refinement procedure is applied
the resulting boundaries are improved resulting in one compact region as shown in
Figure 9, where the pixel/boundary error are shown in Table 1. At higher levels in the
pyramid the boundaries are also smoother, indicating that the filtering process has re-
assigned some of the father-son links. When the noise is increased to SNR = 1.0 the
resulting segmentation has poor boundary definition (see Figure 10). However, it can
be seen here that the pyramid has imposed the spatial restrictions. The interior of the
region is compact and it is only the boundary area where the uncertainty is high that
the segmentation is poor. When the refinement procedure is applied the uncertainty is
reduced and the resulting segmentation shows a compact region as shown in Figure 11
and a pixel error is shown in Table 1.

SNR

2.0

1.0

without
refinement E

1.27

1.31

with
refinementE

0.51

0.66

SNR

5.0

2.5

1.66

1.25

without
refinement E

0.57

1.03

1.47

2.05

with
refinementE

0.53

0.53

0.69

0.90

Table 1. Pixel errors for the blob image. Table 2. Pixel errors for the valve image.

Figure 6. Blob image, Figure 7. Blob image, Figure 8 Segmentation of Figure 6, without
SNR = 2.0. SNR = 1.0. boundary refinement.

Figure 9. Segmentation of Figure 6, with
boundary refinement.

Figure 10. Segmentation of Figure 7, without
boundary refinement.
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Figure 11. Segmentation of Figure 6,
with boundary refinement.

Figure 12. Original
Blob image with

segmentation overlaid.

Figure 13. Noisy Blob
image with segmentation

overlaid.(SNR = 1.0).

Figure 12 shows the segmentation of Figure 11 superimposed onto part of the original
image, and a small number of errors can be seen around the boundary. In Figure 13
the same boundary has been superimposed onto the noisy image, illustrating how these
errors arise. Where there are errors in the boundary position the grey-levels appear
darker, that is, appear to be part of the original object. The segmentation algorithm
has performed as desired and without any other knowledge it is impossible to
reconstruct the original boundary in high noise.

Figure 14. Valve image at various levels of noise with segmentations with and without
boundary refinement. From top to bottom the SNR is 1.66 and 1.25.

In Figure 14 an image of a valve is shown with various amounts of added noise up to
SNR = 1.0 together with segmentations where, only the bottom layer of the pyramid is
shown. This is a more natural image because it is not compact like the previous blob
image. The left hand side of this figure shows segmentations without boundary
refinement, and as expected the boundaries are not well defined. The right hand side
shows segmentations with boundary refinement. Despite not being a compact image
the valve tap has been found and it is not until the SNR =1.0 that the tap becomes
detached from the main body. Table 2 shows the boundary/pixel errors and it can be
seen that the for the highest amount of noise E = 2.05 in the case of no boundary
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refinement. When refinement is used the pixel/boundary error is approximately half at
E = 0.90, that is, for each boundary pixel in the original image there is less than one
pixel error.

Figure 15. Engineering clamp image at various levels of noise with segmentations with and
without boundary refinement. From top to bottom the SNR is 1.66 and 1.25.

SNR

5.0

2.5

1.66

1.25

without
refinement E

0.38

0.61

0.91

1.13

with refinement
E

0.12

0.20

0.48

0.75

Figure 16. Eng
Clamp segmentation

overlaid.

Figure 17. Noisy Eng
Clamp with with

segmentation overlaid

Table 3. Pixel/boundary errors for the
engineering clamp image with and without

boundary refinement.

A problem often encountered with multiresolution algorithms is that small or thin parts
of an object become lost. In Figure 15, an engineering clamp, the problem is
exemplified. The main body of the clamp has two legs protruding from it, one with a
finger grip at its end. These legs are only four pixels wide in the image and after two
levels of pyramid smoothing the legs are only one pixel wide and at higher levels have
been smoothed altogether and cannot be seen. The finger grip is larger and survives to
higher levels which can be seen in the top left-hand image. The segmentation has
divided the clamp into two regions, however, in the boundary refinement case, the legs
have been restored by the region growing nature of the procedure. The boundary/pixel
errors can be seen in Table 3 and again, improvement is shown for all levels of added
noise. Figures 16 and 17 show part of the engineering clamp image with the
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segmentation superimposed onto it. From the figures it can be seen that in the area
where the legs are not fully grown the pixel data are corrupted by noise to such an
extent that they appear to have become the background. Therefore, without other
information it is not possible to establish that these regions should be present.

Figure 18. Engineering clamp image at various levels of noise with segmentations with
boundary refinement and with directional filtering. From top to bottom the SNR is 1.66 and

1.25.

SNR

5.0

2.5

1.66

1.25

without refinement E

0.12

0.20

0.48

0.75

with refinement E

0.12

0.18

0.38

0.63

Table 4. Pixel errors for the engineering clamp image.

The results of applying the directional filtering algorithm are shown for the
engineering clamp in Figure 18. In this figure the segmentations in the second column
are the result of the boundary refinement technique and are shown here for
comparison. When the SNR is high, the results are no better than the previous method.
However, at SNR=1.66 or lower the right hand leg is not segmented. Using the
directional technique improves the segmentation although the legs are still not totally
connected. Table 4 shows the pixel/boundary errors and some improvement can be
seen at low SNRs. It should be noted that these segmentations are a more faithful
representation to the image data and that without further assumptions or information
(for example, that all regions should be connected) it is not possible to produce
connected segmentations from the data.
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6.0. Conclusions

Boundary uncertainty has been improved for high uncertainty images using an
adaptive filtering method which also re-introduces small features that have been
lost due to the multiresolution nature of the pyramid. A non-isotropic method was also
shown that improved the quality of thin structures when the added noise was high.

It has been shown that boundary uncertainty can be improved using a Gaussian filter,
the width of which is dependent on the local inter-region SNR. After the re-linking
has converged at a level each node is filtered and linked to the father that is closest in
distance space. This process iterates until no more links are changed. Some examples
of how this method works have been shown and good boundary placement is
established with a balance between class certainty and boundary uncertainty achieved.

A problem often encountered with top-down multiresolution segmentation algorithms
is that small or thin features tend to be lost. This has been resolved to some extent by
the growing nature of the filtering process that tends to re-introduce lost features. A
non-isotropic filtering technique that re-introduces small or thin features. Numerous
examples of this method have been shown including comparisons with the isotropic
technique.
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