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Abstract

An application of Robust Statistics in a Hough Transform based motion esti-
mation approach is presented. The algorithm is developed and experiments
are performed, proving its superior performance in terms of estimate accu-
racy, convergence, robustness and better segmentation. Comparative results
with standard methods are also included.

1 Introduction

A substantial body of work in computer vision has been concerned with motion
analysis. The diverse range of applications includes autonomous navigation, the
recovery of 3D structure of the scene, data compression and object tracking. Each
of the prospective applications requires a robust approach that can reliably extract
motion information from real sequences. This means that an algorithm has to cope
with multiple objects moving with independent complex motions across a non-
stationary background. In addition the possible range of displacements may be
large, and the noise level significant. Yet the majority of the studied algorithms
make unrealistic assumptions, limiting the number of objects in the scene, or
assuming coherent translational pixel displacements. The purpose of this paper is
to present an approach in which the application of Robust Statistics and the Hough
Transform technique results in a robust approach capable of handling complex real
sequences.

The problem of extracting motion information (i.e. motion estimation and
segmentation) can be viewed from the following perspective. Each pixel on the
image plane undergoes a certain 2D displacement that is a projection of some
3D motion. If a 2D correspondence is known (i.e. the correspondence between
pixels in the reference and consecutive frames), the displacement vector can be
easily computed. Such a correspondence can be established using the assumption
that pixel grey-level is preserved in time. The extraction of motion information
involves usually two main steps (though they may be performed in reverse order
or in parallel): i) finding the displacement for each pixel and ii) grouping pixels
moving with coherent motion into objects.

The first step corresponds to recovery of so-called optic flow while in the second
step the flow is segmented into regions moving with coherent motions. The optic
flow recovery is an ill-posed problem. No matter what method is applied, it may
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fail for some pixels because of one or more of the following reasons. Firstly the
assumptions about the preservation of pixel gray-levels may be violated due to
noise, changes of illumination, reflections, or shadows. Secondly there may be
more than one solution because of the aperture problem in non-textured regions.
Finally, in case of occluded or uncovered background a pixel may not be present
in one of the frames. In all these examples an additional constraint is necessary
in order to regularise the problem.

Most of the approaches that explicitly recover optic flow use the notion of
smoothness as a regularisation constraint [8]. In consequence, flow is smoothed
out and significant errors are introduced along the boundaries between differently
moving regions. Subsequent segmentation is then difficult or even impossible to
perform. Some approaches try to inhibit the smoothness constraint across the
motion boundaries, although this is difficult in practice because motion segmenta-
tion is seldom known a priori. For example Nagel proposed 'oriented smoothness
constraint' [12]. Other researchers use Markov Random Fields incorporating line
process and include additional information relevant to segmentation (e.g. inten-
sity edges) to estimate translational [7] or complex [4] motions. These techniques
tend to be slow in convergence and are sensitive to the selection of the model
parameters.

The local smoothness constraint can be replaced by a global model of the optic
flow. Bergen et al.[2] described a general framework introducing a family of global
and local motion models that constrain the overall structure of the optic flow. They
report a number of experiments in which a complex flow structure was successfully
recovered. However the method may fail if multiple moving objects are present
in the scene. Researchers have also employed the Hough Transform techniques
for the interpretation of optical flow fields [1][11] and for parallel estimation and
segmentation of complex motions [14]. For example, Adiv [1] firstly partitions
flow into connected segments of coherent motion, which are later grouped into
objects. A multipass technique is used to cope with multiple objects. The process
is however slow (two explicit 3D Hough transforms are computed) and errors in
optic flow (e.g. oversmoothing) propagate on segmentation. In [14] estimation and
segmentation are performed in parallel, thus constraining each other to give better
results. Since the Hough Transform is formulated as an optimisation problem and
computed only implicitly the method is fast. However our experimentation proved
that the method may fail if the scene contains many moving objects.

In this paper we describe an approach which uses robust statistics and Hough
transform techniques. The combination of these techniques and a family of ad-
vanced global motion models will be shown to result in an algorithm that is supe-
rior in terms of accuracy and robustness. The paper is organised as follows. In the
next section we outline the mathematical formulation of the model and develop
the algorithm. Section 3 describes several experiments on real and simulated data,
and provides some comments on the performance. Finally, conclusions are drawn
in Section 4.

2 The Robust Hough Transform for Motion Ex-
traction

This section provides an outline of our Robust Hough Transform (RHT) approach
for motion analysis. We begin with a short discussion on the selection of optimal
motion model. Then we present the principles of Hough Transform based motion



241

estimation and show how this idea is implemented by various researchers. We
show that the existing implementations may sporadically fail to converge and that
the motion estimate may be biased. We apply the Robust Statistics theory to
address these drawbacks and propose an algorithm with dramatically improved
performance. Finally we explain important aspects of the implementation such as
the hierarchical approach, multiresolution search and the segmentation strategy.

2.1 Motion Model
It was mentioned above that motion estimation requires a regularisation con-
straint and consequently all algorithms make some additional assumptions about
the structure of the motion. The estimate can be constrained either locally (e.g.
smoothness) or globally within a larger region. Estimates based on large regions
are more accurate and robust, provided that the motion within the region is uni-
form and that the motion model is flexible enough to describe it. However complex
models require large regions to extract motion parameters accurately and are more
computationally demanding. Therefore the selection of the motion model, which
is a tradeoff between complexity and flexibility, depends on the application. For
example, the algorithm estimating the velocity of the objects (cars) from the side
view may employ a purely translational model with good results. On the other
hand such restriction cannot be used for unknown scenes. In our approach we em-
ploy an affine motion model in which pixel positions in the reference frame p(x, y)
and consecutive frame p'{x',]/) are related by the following equation:

p' = T3(p)= p+(aix + a2y + a3,a4x + a5y + a6) (1)

where vector a = (ai...ag) represents the model parameters. The above model is
capable of handling translation, rotation, change of scale and shear. We believe
that it gives an optimal balance between complexity and performance for most
real sequences. However our approach need not be restricted to the above model,
and therefore we use a general notation Tg(p) for motion transformation. In the
next subsection we show how the Hough Transform can be tailored to efficiently
and robustly solve the motion estimation and segmentation problem.

2.2 Hough Transform and motion analysis
The Hough Transform was originally proposed for the detection of parametric
curves, e.g. lines or ellipses. Subsequently it was applied to a large range of ma-
chine vision problems including motion extraction. The HT is effectively a method
segmenting feature points into groups satisfying some parametric constraint. It
can be also considered as an estimation procedure in which parameter estimates
are defined through the extrema of a function. For a comprehensive review of the
HT refer to [10].

Let us assume that the pixel intensity is preserved, i.e.:

/O(P) = W ) ; (2)

where Io(p) and I\{p') are the grey-level intensities at pixel location p and p'
in the reference and consecutive frame respectively. Pixel positions p and p' are
constrained by the motion model Ta. The displaced pixel difference is defined as:

c(a,p) = I0(p)-h(Ts(p)) (3)
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In the standard Hough Transform a pixel p votes for a particular motion parame-
ter vector a if it satisfies the condition: |e(a,p)| < T where T is a predetermined
threshold. The points in the parameter space that collect large number of votes
indicate motion of individual objects. We employ the 'HT by optimisation' ap-
proach [14],[15] in which the support h from pixel p is defined by a kernel function

h(a,p) = p(c(a,p)) (4)

The total amount of support H($t, a) received by the motion vector a from the
region 3? can be expressed as:

(C(p,a)) (5)

The motion parameter vector can be estimated by finding a minimum in func-
tion H. This requires an iterative minimisation procedure such as steepest descent
or conjugate gradient methods. We employed the steepest descent method [15].
Partial derivatives of the support function H in the parameter space can be ex-
pressed in terms of the spatial gradients of the image intensity functions IQ and
h:

dH_ ^ Opje) dh{x',y>)

i ^ de da{
 W

dh{x',y') = dh(x',y')dx' dh(x',y') dy1

dai dx' da{ dy' da{
 ( '

where ie {1,2,3,4,5,6}.
When methods like steepest descent are used to solve optimisation problems,

two issues become of a primary concern: the initial (starting) point and the con-
vexity of the minimised function in the region between the starting point and
global minimum. It can be shown that the support function H (eq. 5) is a well
behaved function in the vicinity of the optimal motion vector 0 provided that the
Taylor expansion is valid within the region. If long range motion is present, the
aliasing of high spatial frequencies may cause the failure of the algorithm. We
resolve this problem using hierarchical estimation [13], which is explained later in
this section.

Many algorithms employ the above principle either explicitly [1], [14], [15] or
implicitly [2]. However experiments prove that they tend to perform poorly or fail
to converge on sequences containing few moving objects. Investigation of the rea-
son underlying this sporadic failure of the algorithms revealed that the minima of
the support function H are sometimes displaced from the position corresponding
to true motion (Figure 3). The effect is amplified when the size of the objects is
comparable and when a quadratic function is used as a kernel. Such behaviour can
be explained on the grounds of the estimation theory. When quadratic error func-
tion is used, the minimisation of support function (eq. 5) effectively corresponds
to the Least Square (LS) or mean estimator. The LS estimator has a number of
limitations, the most important being its sensitivity to outliers. When objects are
of comparable size, outliers may constitute half of the pixels. The use of absolute
value as error norm produces the median estimator which is known to be more
robust than the mean one. This fact is confirmed by experiments; however in some
cases it was not robust enough. To overcome these problems we propose a robust
estimator employing a redescending kernel, and experimentally demonstrate its
dramatically improved properties.
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Figure 1: Robust error norms and corresponding Influence and Weighting functions

2.3 Robust statistics
Robust Statistics is a branch of statistics that investigates the sensivity of statisti-
cal procedures to the violation of the underlying assumptions. The technical term
'robust' was first introduced by Box [3] in the fifties. In the sixties Tukey sum-
marised earlier work in the field and demonstrated the drastic non-robustness of
the least-square estimators. The solid mathematical foundations were introduced
by Huber [9] and Hampel [5]. Here we define basic terms used in robust statistics
theory and summarise the most important properties. More details can be found
in textbooks (e.g by Hampel at al. [6]).

Two important terms concerning the performance of the estimator should be
explained here: efficiency and robustness. Efficiency refers to the ability of a
procedure to provide optimal estimates from data that fulfills the underlying as-
sumptions (e.g assumptions made during the design of the method). Robustness
reflects insensitivity to the assumptions being violated. The Least Square Estima-
tor is efficient but non-robust. In this method the quadratic error term weights
heavily the contributions to the 'optimal' solution from the data points which have
a large residual errors (e.g. outliers).

Huber's class of'M-estimators' are a generalisation of the Maximum Likelihood
estimators. Given a set of N data samples {<£, z(d{)} and a function constraining
the structure of the data z = f(a, d) we estimate the optimal parameter vector a
that minimises an error metric H(a). The error metric H is usually the sum of
the error norm (e.g. kernel) p(-) of the residual errors e(d,) = z{di) — /(a, <fj):

N

(8)

where s is a scale estimate. The robustness of the estimator is increased by mod-
elling the kernel function p(c(di)/s) so that the influence of the outliers (for which
values of e(d,)/s are significant) is scaled down. Figure 1 illustrates examples
of such designs, namely the Huber Minimax (a), Hampel (1,1,2) (b) and Tukey
Biweight (c) error norms. Hampel [6] introduced the influence functions (IF)
>̂(e) = dp/de as a convenient tool for analysing the behaviour of the variety of

robust estimators. The influence functions for the kernels mentioned above are
not scale-invariant and the spread of the data distribution has to be computed.
A Median Absolute Deviation (MAD) robust scale estimator can be used for that
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purpose [6]:

s(a) - lA826median(\h(di)-median(h(di))\) (9)

The scale is based on the median of the absolute errors between the data points and
the initial parameter estimate. The coefficient 1.4826 derives from the assumption
that the model error terms are normally distributed random variables. Its value is
equal to the ratio of the standard deviation to the median of absolute deviations
from the mean of a Gaussian distribution.

2.4 Details of the implementation

In this section we explain important details of the implementation, namely the
hierarchical strategy, multiresolution in parameters space and the segmentation
algorithm.

The hierarchical approach has been used by various researchers. The key idea
is to start estimation at the low (coarse) resolution in the image pyramid and then
refine the estimate on the subsequent, finer levels. Such strategy improves the
computational efficiency but, even more importantly, helps in convergence. This is
particularly important if large displacements are involved. In this case the effect of
aliasing of high spatial frequency components of the intensity pattern may prevent
the convergence. In our algorithm the hierarchical approach is combined with a
multipass strategy. Once a moving object is detected at the low resolution the
estimate and motion segmentation are passed to the next level in the hierarchy.
In several iterative steps the final motion estimate is recovered and all pixels
conforming with this motion are marked as 'segmented'. The above procedure is
repeated for pixels not labelled as 'segmented' until the majority of pixels have a
motion parameter vector assigned to them.

The minimisation of the function H is performed on a discrete grid rather then
in continuous space. This approach has two advantages. Firstly, it facilitates the
detection of the local minima without the need for the computation of the support
function values after each step. Secondly, computations are simplified because the
step size need not be computed. In order to make the search process more efficient
the parameter space resolution has several levels. Minimisation starts at a coarse
grid and explores subsequently higher resolutions to obtain the desired accuracy.

The final motion segmentation takes place when motion vectors of all objects
present in the scene are recovered. For each motion vector a* we use the cor-
responding displaced frame difference DFDk (smoothed with a Gaussian-shaped
kernel) to compute a 'likelihood' image L^\

Lfc(p) = exp{-0.5[DFDk(x, t /) /^]2}; (10)

where crj,- is the estimate of noise (which may depend on object) and may be
computed from the robust estimate of the scale. An additional region k = 0 corre-
sponds to unknown motion parameters (e.g. occluded or uncovered background)
and has a constant likelihood value assigned to all pixels.

The assumption is made that each pixel belongs to one of the regions and
likelihood functions Lk are normalised so that the following equation holds for
each pixel p,-:

*€{0,..,n}

Finally each pixel p,- is assigned to the region k with the highest probability value.
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3 Results

In this section we present some experimental results. The first experiment shows
how multiple moving objects can result in displaced minima in the Hough function
causing the estimate to be biased. We also show that the problem can be corrected
by introducing a redescending error norm. In the sequence two objects of a sim-
ilar size are moving with purely translational motion. Translational motion was
selected for the sake of easy visualisation. The comparable size of the objects (the
actual ratio of the object areas is 1:1.3) simulates the worst-case scenario when
the number of outliers is close to 50%. Objects are referred to as the left and right
one. Figure 2(a) presents the reference frame. Three kernels were used during
estimation: the Quadratic, Absolute and Hampel (1-2-2). Figure 2(b) shows the
Kernel and Influence function for the latest norm.

Robust Errror function

A
mnuano* Rmodon
K«m*i Fwnction

•3.O -S.0 -1.0 OO 2.O 3.O

(a) lGen2' Reference Image (b) Hampel (1,2,2) error norm

Figure 2: Reference image from Gen2 sequence and Hampel (1,2,2) error norm

The real motion parameters and the estimate based on each error norm is
presented in Table 1. The estimates based on Quadratic and Absolute error norm
are strongly biased by the presence of outliers. In the multipass procedure a
biased estimate of the motion of one object propagates on segmentation (e.g. not
all pixels belonging to the object are segmented out) and the algorithm may fail
to recover the remaining objects. Indeed, such behaviour was observed during
the experiment (marked as (*) in the table above). The Hampel (1-2-2) error
function proved sufficiently robust to recover exact motion parameters even in
this worst-case experiment.

left
object
right

object

Vx
Vy
Vx
Vy

True
3.00
1.00

-3.00
-1.50

Quadratic
2.68
1.30

-2.89
-1.47*

Absolute
3.00
0.96
-2.86
-1.50

Hampel (1-2-2)
3.0
1.00

-3.01
-1.50

Table 1: A comparison of the estimate accuracy for different kernels.



246

Figures 3(a-f) depict the contour plots of the Hough function obtained with
the above mentioned error norms. The first three plots focus around the minimum
related to the left object, with the next three corresponding to the right one. It
can be readily seen that for the robust Hampel (1-2-2) kernel ((c),(f)) the Hough
space exhibits a nicely-shaped unbiased minimum. The application of non-robust
error norms, not only bias the estimate but also result in local minima for the left
object (Panels (d) and (e)).

Laft Objaa (in the pnaaoce of oulkn)

(a) Quadratic error norm

right object (ij the puaence of OUIIMK)

(b) Absolute error norm

ri«ht objoct (in the preunct of oullien)

(c) Hampel error norm

Right object (in the pnuencc of outlien)

(d) Quadratic error norm (e) Absolute error norm (f) Hampel error norm

Figure 3: Contour plots of the Hough space for different error norms

For our next example we consider a sequence with two objects moving past
non-stationary background (Figure 4 (a)). The motion was artificialy generated
so that the exact motion parameters are known (Table 2). The background was
subject to a change of scale (with the focus of expansion FOE = (120,120) and
change of scale z = 0.98) and translation (translation vector Tv = (2.8,3.2)). The
first object was rotated (angle of rotatation © = 10 degrees and center of rotation
Rc - (150,114)) and translated (Tv = (0.4,1.2)). The second object was scaled
(FOE = (132,150), z = 0.92 and translated (Tv = (0.25,0.33)). An affine motion
model was used. The motion segmentation was satisfactorily recovered (4(c)) and
motion parameters accurately estimated for each object (Table 2). This example
demonstrates that the presented algorithm can successfully cope with complex
multiple motions.

Finally we present an example of motion estimation from a real sequence de-
picting a view from the bridge on a A3 highway (Figure 5(a)). The sequence was
taken using a hand-held camera, and therfore the background is not stationary.
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| Object

Background
Region
First

Region
Second
Region

True Motion
Estimate

True Motion
Estimate

True Motion
Estimate

al
-0.020
-0.020
-0.015
-0.060
-0.080
-0.080

Motion
a2

0.000
0.000
-0.173
-0.155

-0.0
-0.003

parameters
a3

5.19
5.01
22.47
16.91
10.80
9.47

a4
0.0
0.0

0.173
0.155

0.0
-0.003

a5
-0.020
-0.020

-0.0151
-0.060
-0.080
-0.080

1
a6

5.59
5.42

-23.11
-19.36
12.32
11.95

Table 2: Ground truth and estimate of motion parameters

(a) Reference Image (b) True Segmentation (c) Motion Segmentation

(d) Confidence map (e) Confidence map (f) Confidence map (g) Confidence map
'unknown' region Background Region 1 Region 2

Figure 4: 'Two objects' sequence

(a) Reference Image (b) Motion Segmentation

Figure 5: A highway sequence

(c) TFD Image
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The motion of the cars is a combination of translation, zoom and the motion of the
camera. Three motions were detected - the background, the first line of cars, and
the second plane of cars (Fig. 5(b)). The DFD image is shown on Figure 5(c).

4 Conclusions
An approach to motion estimation and segmentation with dramatically improved
robustness and accuracy has been presented. This significant improvement in
performance is achieved by the use of robust redescending kernels and Hough
Transform. Multiple moving objects on the non-stationary background are not a
problem, since multipass strategy is used. The algorithm is fast because of the
multiresolution in the parameter space. Moreover, the multiresolution in image
space gives the algorithm the ability to cope with complex motions even when
large displacements are involved. A family of motion models can be used, depend-
ing on the perspective applications. Finally, a new segmentation strategy based
on probabilistic theory is proposed. Experimental results on generated and real
sequences are presented. Our current research concentrates on optimisation of the
algorithm and real time implementation on the 'DATA CUBE' parallel machine.
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