From contextual knowledge to
computational constraints

Shaogang Gong ~* Hilary Buxton *
Dept. of Comp. Sci., QMW, Uni. of London COGS, Uni. of Sussex
Mile End Road, London E1 4NS Falmer, Brighton BN1 9QH
Abstract

In this work we address the issue of focused computation in computer vi-
sion for effectiveness and efficiency. In particular, we propose a scheme
that links scene-oriented contextual knowledge with the compntational con-
straints required in visual motion segmentation and tracking. The approach
uses Bavesian belief revision techniques to map explicit scene knowledge onto
implicit cansal dependent constraints in controlling compntational param-
eters. We discuss our experimental results from applying this method in
improving existing techniques in traffic surveillance applications.

1 Introduction

In the past. research in computer vision was greatly influenced by the theory of
David Marr [12]. Visual processing modules in the Marr framework operate at
different levels of abstraction. Typically, then, a high level visual task, such as
recognising and tracking a vehicle, is performed by an assembly of self-contained
modules. However, these modules impose very little processing constraint on their
predecessors and successors, and their performance is usually judged in isolation
by a set of “optimal™ criteria. Although this approach to computer vision has
developed soplisticated algorithmic procedures for individual visual competences,
it i1s a clumsy approach to build integrated vision systems. The computational
complexity required by individual competences leads to ineffective and inefficient
performance for the high level tasks of a system.

In recent years, Ullman [19] has argued for the importance of integration
amongst visual modules. More specifically, Ballard [3] has suggested an animate
wmsion approach for two main reasons: first, vision is better understood in the
context of the visnal behaviours in which the vision system is engaged and these
behaviours often do not require elahorated representations of the three dimen-
sional world: second, it is important for “vision as hehaviour” to have a system
framework that integrates visual processing within the task context. These argu-
ments are supported by early work in Bajesy and Allen’s concept of active vision
[2], and more recently, by Brooks' integrated architectures for task-oriented be-
haviours in robotics [5. 6]. Many researchers have shown the potential for building
vision systems with integrated purposive frameworks [17, 18, 1, 7, 15, 9].

Our approach claims that perception is really an opinion on the state of affairs
wm the world rather than a passive response to sensory stimuli. In this work, in
order to “put vision into context”, we emphasise the importance of focused vi-
stion and address the issue of controlling the focus by mapping explicit contextual
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knowledge to implicit computational constraints in an architectural framework
which dynamically determines the way thal the visual modules function. Then,
the notion of vision as behaviour indicates that accumulated knowledge about the
past and reasoned prediction about the future should dictate the very basis of
any process in order to effectively overcome ill-conditioned computation !. Vi-
sual knowledge may appear in conceptual and symbolic descriptions, but often
it is computationally attractive and feasible to associate explicit knowledge with
a;ipropriat.e implicit numerical measures that give rise to the emergent behaviour
(4].

Our initial studies have indicated that contextual knowledge in visual behaviour
can be reassembled by an appropriately linked network of chosen parameter sets
[10). The functionality of such a network is a continuous process of initiating vi-
sual modules with chosen parameter values and updating such values with new
evidence. If visual behaviour is regarded as a process of providing a coherent, most
probable explanation of all the evidence at hand, all modules involved can then be
regarded individually as units for, on the one hand, providing its predecessors
with updated evidence based on the input from its successors and, on the other
hand, invoking chosen parameter values locally. The issue of mapping knowledge
to computational constraints resides in: (1) how explicil contextual knowledge can
be represented as distributed implicit parameter sets, and (2) what computational
mechanisms are required for effective distribution and invocation of the parame-
ters. Early studies by Levitt ef al [11] suggested the use of Bayesian networks for
knowledge representation. Recent work by Murino et al [13] further exploited such
techniques for using knowledge in the control of camera operations.

In section 2, we briefly review some basics of the Bayesian nets and associated
belief revision mechanisms before presenting, in section 3, a specific scheme in
which scene-oriented contextual knowledge is mapped onto Bayesian nets for the
control of a selective and focused segmentation and tracking of moving objects. In
section 4, we discuss our experimental results and evaluate our approach against
an existing technique. We conclude this work in section 5.

2 Beliefs and the Most-Probable-Explanation

Bayesian belief networks are Directed Acyclic Graphs (DAG) in which each node
represents an uncertain quantity using variables with multi-possible values. The
arcs connecting the nodes signify the direct causal influences between the linked
variables with the strengths of such influences quantified by associated conditional
probabilities. If we assume a variable in the network is X;, and a selection of
variables Il -, are the direct causes of X;, the strengths of these direct influences
are quantified by assigning the variable X; a link matrix P(z;|IIx,), given any
combination of instantiations of the parent set Ily,. The conjunction of all the
local link matrices of variables .X; in the network (for 1 < i < n where n is the total
number of the variables) specifies a complete and consistent global model which
provides answers to all the probabilistic queries. Such a conjunction is given by the
overall joint distribution function over the variables Xy, .. X,: P(z1,z2,...,2,) =
[T, P(xi|lx,), where lower case symbols stand for a particular instantiation
of the corresponding variables 2. Then, if the behaviour of a visual process is

! By saying “overcome ill-conditioned” here we mean, that in a broad sense, employing high-
level symbolic knowledge is equivalent to the use of global geometric or algebraic constraints in
order to regularise the computation.

2In the rest of this article, variables will always be denoted by upper cases and specific
instantiations of the variables will be denoted by lower cases.
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partially defined by its processing parameters, the evaluation of these parameters
shall be consistent with the visual task at hand such that the task is accomplished
by associating the parameters with given beliefs.

In a belief network, if we quantify the degree of coherence between the expec-
tations (X) and the evidence (e) by a measure of local belief * BEL(z) = P(z|e),
and define belief commitments as the tentative acceptance of a subset of hypothe-
ses that together constitute a most satisfactory explanation of the evidence at
hand, then, Bayesian belief revision amounts to the updating of belief commit-
ments by distributed local message passing operations. Instead of associating a
belief measure with each individual hypothesis locally, belief revision identifies a
composite set. of hypotheses that best explains the evidence. We call such a set the
Most-Probable-Explanation (MPE). In computational terms, this means finding
the most probable instantiations of all hypothetical variables given the observa-
tion. Let W stands for all the variables concerned, inclusive of those in e, any
particular instantiation of variables in W that is also consistent with e will be
regarded as an ertension or erplanation of e. The problem then is to find an
extension w* that maximises the conditional probability P(w|e). In other words,
W = w* is the MPE of the evidence if P(w*|e) = maxw P(wle). Here, w* is
obtained by first locally computing the belief function for each variable X men-
tioned above, i.e. ¥ BEL*(z) = maxw, P(z,w’'x|e) where W/ xy = W — X and
second, propagating local messages. The local messages are defined as: if X has n
parents [/} [7s, ... [/, and m children Y}, Y5, ..., Y, then node X receives messages
mx (ui), i =1,...,n from its parents and A",J(.r).j = 1,...,m from its children given

by

7% (u;) is the probability of the most probable tail-extension of the hypothetical
value [7; = u; relative to the link I/; — X and is known as an explanation,

,\;,J[.r) is the conditional probability of the most probable head-extension of the
hypothetical value X' = 2 relative to the link X — Y;, known as a forecast.

More precisely, given the fixed local probability P(x|uy, ..., u,) and the best value
of X as 2™, the propagation concerns with:

Updating BEL*: For F(z,uy,...,u,) = H;’;l )i})(:?)P(ﬂul. ...‘un)H:;l 'y (ui).

BEL"(r) = #maxy,, F(r,uy,...uy), 1 <k <n; 2" =argmax, BEL*(x).
T * e F t PRRR: n
Parent-bound n messages to [7y, ..., {7, A% (u;) = maxy u, ki frﬁ?u—jﬁ—l,
i=1,..,n.

Child-bound m messages to Y}, ..., Y,: :fr;v)(;r) = ;’3%‘:%:}%1

Boundary conditions: three types of nodes set up the boundary conditions.
1) Anticipatory nodes: uninstantiated variables with no children. For such
a node X, Af (r) = [1,...,1]. 2) Evidence nodes: instantiated variables.

For variable X" = 2/, it is regarded as X being connected with a dummy

pifiakal
child Z such that A3(z) = { {1) gﬂ‘:‘er;i;

Y1.Y5, ...}, receives the same message fr;,J = Ay(z) from X. 3) Root
nodes: variables with no parents. Similarly, for each root variable, a dummy

=il

and other real children of X,

3In this article, all the incoming evidence will be denoted by € and be regarded as a set of
instantiated variables EE. Symbol o will be used to denote a normalising constant and 3 will be
used for an arbitrary constant.

“This BEL*(x) represents the probability of the most probable extension of e that is also
consistent with the hypothetical assignment X' = z.
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parent [7 with permanent 1 instantiation is introduced and P(x|u) = P(x) =
T*(2).

It is important to understand the conceptual essence of such a propagation mech-
anism. For each hypothetical value of a single variable X', there exists a best
extension of the complementary variables W'y . The problem of finding the hest
extension of X' = z can be decomposed into finding the best complementary
extension to each of the neighbouring variables according to the conditional inde-
pendencies between .X and the rest. This information can then be used to decide
the best instantiation of X'. The very process of this decomposition resembles the
principle of optimality in dynamic programming in that it is applied recursively
until it reaches the network’s boundary where evidence variables have predeter-
mined values.
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Figure 1: Left: a traffic roundaboul scenario and its traffic flow. Right: correlated spatio-
temporal constraints on the movements of individual objects are imposed implicitly by this
scene fﬂyon.".

3 Motion segmentation and tracking

In VIEWS. a vision system for surveillance applications, one of the key ohjectives
is to segment detected optic flow field into dynamic regions corresponding to pos-
sible moving objects and to track these regions effectively and consistently over
time. Wenz [20] applied a scheme hased on estimated frame displacements of the
extremal loci of a bandpass filter. “Similar” displacement vectors are grouped inte
different moving regions (bounding boxes) in each frame and the similarity is de-
fined by four parameters 1) neighbourhood range, 2) neighbourhood displacement
magnitude ratio, 3) neighbourhood orientation difference and 4) neighbourhood
vector numbers. In Wenz’'s approach, these similarity parameters are set as in-
dependent constants across the entire image. Although this direct approach is
computationally rather straightforward, it is unable to deliver effective and con-
sistent interpretations, especially in images of crowded scenes such as at a traffic
roundabout shown in the left picture of figure 1. Left frames in figure 5 illustrate
some typical defects in the sensitivity and consistency of such an approach. A
more detailed analysis will be given in section 4. We propose that in order to
obtain both effectiveness and efliciency, scene-oriented contextual knowledge has
to be incorporated into the control of parameter values for focused computation.
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VIEWS uses a fixed camera for collecting visual input at each scenario. Under
such static camera configurations, three dimensional scene layout imposes indi-
rect, but nevertheless invariant, constraints on both possible loci of appearances,
sizes, speeds of bounding boxes and the overall traffic flow (see the right picture
of figure 1). Therefore, scene layout defines visual expectations and constrains
the setting of processing parameter values. In other words, the following corre-
lated measures are constrained probabilistically with respect to image coordinates:
1) between object orientation and optic flow vector orientation; 2) between object
size and flow vector neighbouring speed ratio, 3) between neighbouring orientation
difference, object dx, object dy and object bounding box width or height. Such
probabilistic constraints on a bounding box set a compound network of coherent
hypothetic variables (figure 2) that increases resistance to incompleteness and in-
consistency in the flow fields. Such a network can best be modelled by a Bayesian
belief network with dynamic setting of the hypotheses using belief revision propa-
gation. With this approach, we regard segmenting similar flow vectors into possible
moving regions in the image and tracking them down in time as providing a co-
herent, Most-Probahle-Explanation of the detected flow fields by actively revising
the distributed beliefs according to the dependent causal constraints.

Figure 2: A belief network that captures the dependent relationships between the scene
layout and relevant measures in motion segmentation and tracking.

The belief network in figure 2 is purposively constructed with a tree structure,
a special type of “singly connected” network, in order to gnarantee the propa-
gation of message passing in belief revision to be tractable [14]. With the image
(512 % 512) being divided into 25 grids, the root node IGP (Image Grid Position) in
this tree represents the probabilistic expectation in the occurrence rate of ohjects
in image grid positions. Nodes OSS and OOR represent respectively the proba-
bilistic expectations in the square size and orientation of bounding boxes in image
grids. The six leaf nodes at the bottom level of the tree represent, respectively,
the expectations in flow vector orientation (FVO), neighbouring vector speed ra-
tio (NSR). orientation difference (NOD), x component in object bounding box’s
displacement (ODX), y component in bounding box displacement, and the width
of a bounding hox (OWD).

It is important to point out that first, leaf nodes are the evidence nodes and it
is desirable to relate them to qualitative measures by representing relative quan-
tities of flow vectors. This is designed to overcome the instability of individual
vectors in optic flow fields. Second, great effort was made to reduce the number
of causal connections and the number of hypothetical variables to the minimum
at the expense of approximations in the representation of certain variable nodes.
This is because the computational load increases by an order of 2" — 1 where n
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is the number of variable nodes in a network [8]. Node OSS is also taken as the
approximation for the neighbouring vector searching range. The actual size of a
bounding box is determined by the grouped number of neighbouring flow vectors
and the loci of these vectors. The location of a bounding box is given by the centre
of gravity of the member vectors and its initial velocity is estimated by the mean
velocity of the vectors grouped in the initial frame. Third, in order to have effi-
cient computation, it is crucial to balance the compromise in the approximation of
hypothetical values and the accuracy of their representations. It is computation-
ally attractive to approximate any continuous variable with a set of few discrete
values. Fourth, the conditional probability distribution matrices between any two
nodes are usually subject to probabilistic estimation based on extensive test ex-
amples. Statistical studies in the past [8] suggest that if well controlled number
of variables are built into a Bayesian network, the estimated distribution matrices
are not just merely appropriate numbers that can explain away a set of examples
without capturing the general characteristics of the phenomena. Still, accurate
estimation of these parameters remains one of the important factors for computa-
tional success of a belief network. Recent studies by Spiegelhalter [16] have shown
techniques for updating and learning of the distribution matrices dynamically in
order to provide more accuracy in their estimation. Finally, the algorithmic steps
of our approach for the segmentation and tracking of ohject hounding box from
optic flow fields are: 1) Set the maximum expected number of object in a scene
and initialise such a number of belief nets.  2) Set AV (r3) = [1,...,1] where
Xi =[FVO,NSR.NOD,ODX,0DY,0W D] and P(x|u) = P(z) = n*(r) where
X = [IGP], then initial equilibrium of a helief tree is obtained by (a) propagating
all the lambda messages upwards, (b) propagate all the 7 messages downwards,
(c) estimate the local beliefs throughout the tree, and (d) obtain a composite
set. of local instantiations of each variable that together is the best interpreta-
tion of the initial. “no evidence”, condition. 3) For the first image frame, vectors
are grouped according to the best value assignments associated with beliefs cor-
responding to their image grid position. For successive frames in the sequence,
vectors are grouped according to best values, either to beliels associated with pre-
vious tracked bounding hoxes. or to beliefs associated with image grid positions.
4) For each calculated measure in the similarity test procedure, the value instan-
tiates the associated node and revises local belief as well as other nodes’ beliefs by
propagation until the tree reaches equilibrinm. 5) Revise locally every node’s best
value assignment. so that the bounding box will set. the most probable similarity
threshold values for grouping vectors that are near to its expected location in the
next image frame. Repeat steps 3 to 5.

4 Experiments and evaluation

The current design of the belief network has been tested extensively on image
sequences from the traflic roundabout scenario. In the following, we measure the
performance and computational cost of both the belief revision and the direct
approach and discuss their effectiveness against their efficiency.

In assessing performance, we first show the sensitivity of the techniques by
measuring their false alarm rate hefore we measure the consistency of both tech-
niques in tracking idividual objects over time. The false alarm rate was taken
over an image sequence of 400 frames.

The left graph in figure 3 shows the false alarm rate on hoth techniques over
time. It gives a good indication that the helief revision approach increases the true
identifications significantly without introduce excessive false alarms. Throughout
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Figure 3: Left: the false alarm rate. Right: the “ground truth” and detected number of
objects and their durations in the scene over a sequence of 170 image frames.

the whole sequence, the maximum false alarm rate from the belief revision ap-
proach is about 16 %. which is below the minimum rate from the direct approach.
The maximum false alarm rate of the direct approach, on the other hand, reaches
60 % and its average rate is nearly 50 %!

For measuring consistency, we compile the histories of tracked objects from
both techniques and compare them with the “ground truth” of a 170 frames image
sequence we collected independently. In the right graph of figure 3, the flat and
long lasting line shows the ground truth of the number of objects against their
durations in the scene. For example, 1 object that has stayed for the entire 170
frames, 13 objects which have lasted for 14 frames, etc. The sharp pulse line shows
that the direct approach has taken fragments of objects with long durations and
tracked them as a large number of objects with very short histories. There is no
object being tracked for more than 50 frames. That shows poor consistency. In
contrast, the dotted line shows that the belief revision approach provides with
much accurate measure of both the number of objects and their durations.
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Figure 4: Left: time consumption in seconds for the belief revision and the direct ap-
proaches respectively, and their first order derivatives over time. Right: percentage in-
crease in belicf revision approach’s time consumption.

For estimating the computational cost, we first measure the absolute time
consumption (in seconds) of both schemes over the 400 frames sequence, see the
two near linear increasing lines in the left graph of figure 4. The divergence
between the two lines is rather deceptive since it appears to show a continuous
increase of processing time in the belief revision scheme. However, it actually shows
the accumulated cost of hootstrapping belief networks over time. The frame by
frame computational cost is more realistically given by the first order derivative
of time over those two lines, which are shown by the two step lines. This can be
seen more clearly by measuring the percentage of the increased time consumption
in the belief revision approach from the direct approach (see the right graph in
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Figure 5: Results on frames 140, 145 and 150. Left: by the direct approach; right: by
the belief revision approach.
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figure 4). The former’s frame by frame computational overhead against the later
throughout the whole sequence is below 13 %, and it is worth pointing out that
providing more accurate segmentation and tracking of objects instead of missing
identifications requires “extra” computational cost.

Our quantitative measures presented here illustrate that: with very limited
cost in computational efficiency, significant gains are obtained in effectiveness by
using the belief revision technique. A more visual comparison between the two
approaches can be seen in figure 5. Three successive frames from our test sequence
are shown with the results from the direct approach on the left and from the belief
revision approach on the right. It is worth noticing that: first, the belief revision
approach is very robust against incomplete evidence (see the tracked cyclist behind
a sign post to the left hand side of frames 145 and 150). Second, it is capable of
segmenting very closed moving ohjects (see the cyclist and the two cars close to its
right). Third, one of the reasons for unnecessary time being taken in the current
belief revision process is caused by the simulation of distributed message passing
procedures in the belief propagation on sequential machines.

5 Conclusions

Our main argument in this paper concerns the need to build in knowledge even
at the earliest stages of visual processing in order to deliver both effective and
efficient performance on visual tasks. The specific example elaborated here uses
scene-oriented contextual knowledge to improve the sensitivity and consistency of
the segmentation and tracking of moving objects in the image. We have proposed
the Bayesian helicf revision network as an appropriate model for representing such
conceptual knowledge and the associated belief propagation as the suitable mech-
anism for effective and efficient constraint propagation within such a framework.
We examined relationships between our conceptual knowledge of the traffic scenes
and of the image sequences for the roundabout scenario. We then identified the
required implicit computational constraints to the beliefs that specify the depen-
dencies hetween processing parameters involved. We presented the way in which
a specific belief network can be designed for grouping optic flow fields at a traffic
roundabout scenario.

In conclusion, the results obtained so far show that the computational overhead
introduced by mapping explicit knowledge to implicit constraints for controlling
selective processing is small considering the correct number of moving objects
identified and the improved consistency in both segmentation and tracking. The
belief revision increases the sensitivity to incomplete evidence so that finds moving
objects missed by the direct approach. An extension of this approach will be
examined for model-based object recognition, tracking and behavioral evaluation
in 3D space.
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