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Abstract

Tracking is an important approach to analyze long sequences of images in
Computer Vision. Although it has extensively been studied in other domains
such as in radar imagery, it was introduced only recently in Computer Vision,
and is already recognized as an efficient approach to solving correspondence
and motion problems. We describe in this paper some strategies for tracking
with emphasis on practical importance. They include beam search for re-
solving multiple matches, support of existence for discarding false matches,
and locking on reliable tokens and maximizing local rigidity for handling
combinatorial explosion. We have implemented those strategies in a 3D line
segment tracking algorithm and found them very useful.
Keywords: Token Tracking, Matching, Cluttered Scenes, Search Strategies

1 Introduction
Statistical data association techniques have been extensively studied in radar im-
agery for target tracking [1, 2]. Only recently they were introduced in Computer
Vision. Early work on motion analysis in Computer Vision was mainly on the
computation of motion for two frames obtained from two quite different posi-
tions [3, 4, 5]. One dominant difficulty is the establishment of feature correspon-
dences between frames. Many techniques have been proposed which are mainly
based on subgraph isomorphism, relational structure matching and tree searching.
A number of constraints or heuristics, especially the rigidity assumption, have
been incorporated. The correspondence problem is still found to be very diffi-
cult. Sooner, researchers realized that the problem would become much easier if,
instead, using long sequences of images taken at short time interval. Indeed, as
the time interval is small and object velocity is constrained by physical laws, the
interframe displacements of objects are bounded, i.e., the correspondence of a to-
ken in the next instant must be in its neighborhood. Furthermore, objects usually
move smoothly [6, 7], thus the motion coherence can be used to predict the occur-
rence of tokens in the future, which considerably reduces the search region. The
statistical data association techniques for target tracking, originally developed for
radar imagery, fit well in this framework, and are already recognized as an efficient
approach to solving correspondence and motion problems [8, 9].

However, most of these techniques were originally developed for tracking a
few and known targets, although recently progresses have been made to deal with
large number of targets [10]. The theoretical base under these techniques is directly
applicable to tracking problems in computer vision. A number of particularities,
though, are required to be taken care, [staffs deleted] The interested reader
is referred to [11, 12]. This paper is a continuation of our previous work and we
concentrate on a couple of strategies we recently formulated for tracking tokens.

2 Notations and Terminology
We are interested in tracking geometric primitives including points, lines and
curves. A group of geometric primitives such as vertex and attached edges is
also of interest. We shall call them tokens. A token at time £,• is characterized
by its position, orientation and kinematic parameters, which are captured in a
vector called the state vector x,. An imaging system observes the token which is
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represented by a vector called the measurement (or observation) vector z,-. We
call the observation a scene token.

The (right) subscript is used to denote the time instant, as in x,- and z,-. At
each instant, there are many tokens and scene tokens which will be distinguished
to each other by a left subscript. For example, ẑ,- is the jth scene token observed
at time i. One or both subscripts will be omitted if this does not result in any
ambiguity. The caret * denotes the estimation or prediction. For example, Xk\k-i
denotes the prediction of the state at time k given measurements up to time
k — 1. P denotes the covariance matrix of a state vector and A denotes that of a
measurement vector.

3 Problem Formulation
The dynamics of a token is assumed to be described by a difference equation

Wjfe , ( 1 )

where fjt(-) is a vector function describing the transition of the state vector from it
to tk+i (the so-called state transition function), and w^ is the random disturbance
of the dynamic system. In practice, the state transition function is determined by
the underlying token kinematics assumed. Two commonly used kinematic models
are:

a) Polynomial model: State variables evolve polynomially in time. In general,
constant velocity or constant acceleration model is used [8].

b) General motion model: A token is assumed to undergo a motion with polyno-
mial angular velocity and polynomial translational velocity [11, 13]. In practice,
constant angular velocity and constant translational velocity or acceleration
model is sufficient.

In fact, the polynomial model is a special case of the general motion model where
the angular velocity is zero. One advantage of the polynomial model is that the
transition function f)t(-) is linear while we generally cannot write down a linear
function using the latter model. However, the latter can more reasonably approx-
imate a real motion than the former. The statistical property of the system noise
term w* cannot in general be known exactly. We model w* as an independent
Gaussian noise sequence with zero mean and known covariance, i.e., -Efwjt] = 0,
and 2?[wjfcW|r] = Qk^kt for all k and /, where Ski is the Kronecker delta, which is
1 for k = I and 0 otherwise.

The measurement equation describes the relation between measurements (ob-
servations) and state variables of the dynamic system, which can usually be ex-
pressed as

zjt = hifc(xfc) + nt , (2)

where h*(-) is a vector function called the observation function and n* represents
the random noise contained in the measurements. Measurements are obtained
through some signal processing algorithm such as edge detection and 3D recon-
struction in a stereo system. The statistical property of n* is provided either by
the signal processing algorithm if uncertainty is modeled or is guessed on the basis
of the designer's experience and physical understanding of the signal processing
algorithm. We model n* as an independent Gaussian noise sequence with zero
mean and known covariance, i.e., £[nfc] = 0, and E[nkiif] = Rk^ki for all k and I.

Given a sequence of measurements {z* | k = l..n} of a token, we are ready to
use the Kalman filter if ft(-) and h*(-) are linear, or the extended Kalman filter
otherwise, to estimate the state variable x* of the token. The reader is referred to
[14, 15] for the details of the Kalman filter and the extended Kalman filter.



209

4 Main Steps in Tracking
We shall sketch out in this section the tracking process. By tracking, we mean
establishing at each instant a correspondence between tokens being tracked and
scene tokens observed. As time goes on, some tokens move out of and some others
come into the field of view. Thus we must also deal with the disappearance and
appearance problems. The tracking problem becomes more difficult, because some
tokens may be occluded by others (the so-called occlusion problem) or may not
be detected due to temporary failure of the signal processing algorithm (which
we refer as the absence problem). We shall address these issues in this and next
sections.

4.1 Prediction-Matching-Update Loop
The tracking is performed in a prediction-matching-update loop. At time t (<t_i <
t < tic), i.e., before data at fjt are available, we predict the occurrence at t\-
each token being tracked. When data at t\. are available, we try to find for each
token a scene token as its match in the neighborhood of its predicted position.
When a match is found, the token parameters (state) are updated using either
the Kalman filter or the extended Kalman filter (EKF). In the following, both the
state transition and measurement observation functions are assumed nonlinear,
and the EKF will be used. The discussions, however, are directly applicable to
the linear case.

The prediction is done in two stages. First, the state and its error covariance are
propagated to <jt according to Eq. (1), denoted by x^|jt_i and Pk\k-i, respectively.
We use the first order approximation to compute the prediction of the state error
covariance if f^_i (•) is nonlinear. Second, the predicted position and its covariance
matrix of the token are computed according to Eq. (2), denoted by z and A*,
respectively. Here again we use the first order approximation if hjt(-) is nonlinear.

Due to noise from multiple sources, it is very unlikely that a scene token ob-
served at tk has exactly z*. Given n observed scene tokens at t* {yzt | j = 1, . . . , n}
with covariance matrices {jRk \ j = 1, • • •, n}, we use the Mahalanobis distance
to decide which scene token matches the token having the predicted measurement
vector Zfc with covariance matrix A^.

The (squared) Mahalanobis distance between the prediction and the ith scene
token is defined as

,<=^A->fc, (3)

where ,-rt = ,-Zfc — zjt and AiTk = iRk + A*. We usually call j-rjt the measurement
residual. The variable ,d-J* is a scalar random variate following a \ 2 distribution
with q degrees of freedom, where q is the dimension of the measurement vector.
By looking up the x2 distribution table, we can choose an appropriate threshold
e by setting Pr(x% < f) — ot, where a is typically equal to 95%. If fd^f < t, then
the ith scene token is considered as a match of the token.

A naive matching algorithm yields a linear complexity in the number of scene
tokens to match one token being tracked, i.e., O(n). However, the matching process
may be slow, especially when there is a large number of scene tokens. This is
because the computation of the Mahalanobis distance involves a matrix inversion
and is relatively expensive. Many techniques exist to speed up the matching
process. One of them is the bucketing technique, which allow us to access directly
a subset of scene tokens which are in the neighborhood of the prediction. See [13]
for details. Another technique is proposed by Orr et al. [16], which uses the
inequality

r T A r - 1 r > f ^ , • (4)
trace(Ar)
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Thus we can first compute the simplified distance d' = r3r/trace(Ar), which is
computationally much simpler than Eq. (3). If d! > e, so will be idjf, then the
computation of Eq. (3) is not necessary. This avoids the necessity of performing a
matrix inverse for every test.

Once a match is found, the (extended) Kalman filter is used to update the
token parameters. The updated state and covariance matrix are denoted by x*
and Pk, respectively.
4.2 Initialization
At time t\, each scene token is used to initialize a token. As described in Sect. 2, the
state of a token is composed of its position, orientation and kinematic parameters.
The position and orientation parameters of a scene token are assigned to those of
its corresponding token. The initialization of the kinematic parameters depends
upon the a priori information. If such information is not available, it is reasonable
to initialize them to zero, because we are considering a dense sequence and that
the interframe motion is small. However, in the state covariance matrix, we should
set the diagonal elements corresponding to the kinematic parameters to a fairly
big number and the off-diagonal ones to zero, in order to reflect the fact that we
know nothing about the kinematics of the token.

4.3 Appearance
Because some new tokens enter into the field of view, their corresponding scene
tokens in the current frame cannot be matched with any token being tracked. In
this case, each such scene token is used to initialize a new token as described in
the previous subsection, which starts the same process as the others.

5 Beam Search and Support of Existence
5.1 Different Cases in Matching and Beam Search Strategy
In using the criterion of the Mahalanobis distance, three cases occur in matching
a token:

(i) Unique match: only one scene token is identified as a match of the token,
(ii) No match: no scene token is identified as a match of the token,

(iii) Multiple matches: several scene tokens are identified as plausible matches of
the token.

If there is only one match, then there is a high probability that the scene token
is the observation of the token being tracked. Thus we just update the token's
state by incorporating the scene token.

"No-match" may occur due to a number of reasons. This paragraph is
deleted due to space limitation!

"Multiple-matches" occurs especially when a token is very uncertain (for exam-
ple, during the first instants after initialization) or when several scene tokens are
near to each other. One (maybe the most common) strategy is best-first search,
that is, to choose the nearest scene token as in [8] and to discard the other possibil-
ities. This method is efficient but not robust. It may lead to unpredictable results,
because the closest scene token is not always the correct match. Another possible
strategy is to replace all scene tokens satisfy the criterion of the Mahalanobis dis-
tance by a virtual one with a modified probability distribution. This is the idea
of the JPDAF method proposed by Bar-Shalom and Fortmann [1]. However, this
method introduces a bias in the state estimate because it merges several physically
distinct scene tokens as a single one to update the token's state.

A more efficient approach is to exploit the beam-search strategy. That is, in-
stead of choosing the nearest scene token, several (2, in our implementation), if
any, nearest ones are used. This approach is similar to the track-splitting filter
in the literature [1]. Different from the JPDAF method, we split the token being
tracked into several, as many as the scene tokens found in the search region. Each
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split token updates its state with one of the scene tokens chosen. We leave the
forthcoming observations to decide which match is correct. The token resulted
from the correct match will be confirmed by forthcoming scene tokens, while those
resulted from incorrect matches will in general not. Thus the multiple-matches
problem is handled gracefully. However, the algorithm is potentially exponential.
Some strategy needs to be developed to discard the false tokens.

5.2 Support of Existence
As described in the previous section, our idea of matching is to keep open the
possibility of accepting several or no matches for any given token. However, such
strategy may lead to a computational explosion. To avoid this we must discard
tokens resulted from false matches. We compute for each token a number that we
call its support of existence which measures the adequateness of the token with the
measurements. We have already introduced this measure in our previous work.
The reader is referred to [12].

5.3 Discarding Redundant Tokens
In the beam-search approach, a token can be split, each being updated using a
scene token satisfying the Mahalanobis distance. On the other hand, a scene token
can be used to update several tokens being tracked. This occurs, for example, when
a token splits into two (e.g., two fractions of a line segment is observed) and then
both new tokens are updated with identical subsequent scene tokens. This implies
that the state estimates of two or more tokens tokens may be similar, and it is
likely that they represent the same token. We can thus just retain one token and
discard the Redundant ones.

6 Trying to Resolve Ambiguity as Early as Possible
Use of the support of existence does prevent the algorithm from a computational
explosion. However, it is not efficient enough because we need to process a to-
ken resulted from previous false matches during four or more frames before it is
discarded. It is of much benefit if we can resolve match ambiguities as early as
possible. This section describes two strategies which reduce the match ambiguity
and thus reduce the number of tokens to be processed.

6.1 Locking on a Reliable Token
Besides potentially computational explo-
sion, one major drawback of beam-search
approach is due to the fact that a scene
token can be shared by several different
tokens being tracked. Thus it is possi-
ble that this approach generates tokens
which are not mutually exclusive, nor
consistent with each other. The former
was already discussed in Sect. 5.3 (dis-
carding redundant tokens). The latter
is sometimes a desired feature. If we
have not enough information, it is wise
to leave the forthcoming observations to F i A scene token c a n b e locked b a
resolve the ambiguity. secure token 0. tokens ; .. ^^

However, in the situation as shown tokens
in Fig. 1, we can exploit a strategy, which
we call the "locking-on-a-token", to obtain a better performance. Here two tokens
share one of the measurement (Si), and one token (Ti) has much less uncertainty
than the other one (T2). When a measurement (scene token) is validated by a
secure token, whose state parameters are precise enough, the pairing is almost
unambiguous. This measurement is said locked on by the token, and all other
tokens search for their correspondences as if this measurement did not exist. In
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the situation as shown in Fig. 1, the scene token Si is locked on by the token T\,
and then the scene token S2 is uniquely paired to the token T2.

There are at least three ways to implement this strategy:
1. Comparing the uncertainty measures. The trace of the covariance matrix

roughly measures its magnitude. If trace(Cov(T!)) <C trace(Cov(T2)) (e.g.,
trace(Cov(T!)) < |trace(Cov(T2))), then 7\ can lock on the shared scene to-
ken.

2. Counting the number of appearances. If during the past N (say, 5) frames, the
number of appearance of T\ (denoted by iVi) is much bigger than that of T-j
(denoted by N2), e.g., Ni > 4 and N2 < 2, then T\ can lock on the shared
scene token.

3. Comparing the support of existence /* (see Sect. 5.2). A secure token implies
that it has a high coincidence with the measurements, that is, it should have a
low value of 4 (it has a high support for the existence). If the 4 of the token
T\ is less than a small threshold r, then T\ can lock on the shared scene token.

The third method has been implemented because the value of Ik is readily available.

6.2 Maximizing the Rigidity
Q Rigidity assumption has been used in most

T\ matching algorithms, especially in short-
0 sequence motion analysis. Psychological

study shows that, among many possible
Q S\ interpretations of any change between two

A successive frames, the human visual sys-
7*2 tern only accepts a few, often only one,

£2 which are consistent with the rigidity as-
_.. _ , . . . . . . sumption [31. In long-sequence motion
F l S ' ^ S T ^ ^ L S ^ e analysis ^ / h e problem studie. in this

matches. 0: tokens; •: scene paper, rigidity assumption is not exploited
tokens because the motion continuity or coher-

ence is usually strong enough to resolve
matching ambiguities. Here, we combine the rigidity and motion continuity to
reduce the ambiguities.

Given a situation as shown in Fig. 2, where two tokens (7\ and T2) share the
same measurements (Si and S2). If we split tokens, we will obtain four tokens. If
the relationship between Si and S2 is not rigid compared with that between T\
and T2, then they originate from two different objects (or the object is deformed),
and splitting is the only way we can do. However, if they satisfy the rigidity
constraints, we can resolve the ambiguity using the motion continuity. The dis-
placement of a rigid object between two successive frames in a sequence with high
sample frequency cannot be large due to physical law. A reasonable constraint,
for example, is that the rotation angle between two successive frames must be less
than some threshold, say 60 degrees. To explain how to exploit this constraint, we
refer to Fig. 2 and consider the two-dimensional case. If we assign Si to 7\ and
S2 to T2, the rotation angle is about 45 degrees. On the other hand, if we assign
Si to T2 and S2 to Ti, the rotation angle will be about 135 degrees, which is of
course not reasonable. We thus resolve the ambiguity.

The reader is referred to [17, 18] for a complete set of rigidity constraints for
3D line segments. As the data we have are always corrupted with noise, the
equalities hardly ever hold true. We have formulated the rigidity constraints by
explicitly taking into account the uncertainty of measurements. The reader is
referred to [19, 20, 21, 22] for other formalisms of rigidity constraints.
7 Experimental Results
We have incorporated the strategies described above into a tracking algorithm
previously developed [11, 12]. The algorithm tracks 3D line segments in a sequence
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Table 1. The numbers of scene tokens and active tokens in each frame

frame
scene
active

number
tokens
tokens

1
37
37

2
42
h4

3
4-1
til

4
44
bl

b
43
bl

6
43
bO

7
48
b'2

8
50
60

9
51
Hi

10
b8
69

11
(36
79

12
73
86

13
10*2
l ib

14
101
134

1b
98

146

16
103
147

of 3D frames reconstructed by a trinocular stereo system. It computes at the same
time the 3D kinematic parameters for each line segment, and can segment the scene
into objects by grouping line segments based on motion similarity.

(the first) (the sixth) (the eleventh) (the sixteenth)
Fig. 3. Sample images of the stereo sequence studied

We have tested the modified algorithm on the sequences described in [11, 12]
(but it has not been reported). In this paper, we provide the results on a new
sequence, consisting of 16 triplets of images. The 1st, 6th, 11th and 16th images
taken by the first camera of the stereo rig are shown in Fig. 3. The sequence
was acquired by manually moving the stereo rig away from a wall on which we
have put several posters to increase the number of line segments. The interframe
displacement was supposed a pure translation of 10 centimeters. It is in fact
almost true except for the thirteenth frame, as can be seen later. This sequence
is interesting in that more and more tokens are visible when time goes on, i.e.,
the appearance is remarkable. (Several line segments are not observable in the
3D frames due to the absence problem described in the introduction section.) If
we process the sequence in the reverse direction, more and more tokens would
disappear. However, the appearance problem is more difficult to tackle than the
disappearance in tracking. The number of line segments reconstructed by the
stereo system in each frame is shown in the first row of Table 1.

Each segment in the first frame is initialized as a token to be tracked. Since the
motion tracking algorithm is recursive, some a priori information on the kinematics
is required. A reasonable assumption may be that objects do not move, as the
inter-frame motion is expected to be small. The kinematic parameters are thus
all initialized to zero, but with fairly large uncertainty: the standard deviation for
each angular velocity component is 0.0873 radians/unit-time, and that for each
translational velocity component is 150 millimeters/unit-time.

Those tokens are then predicted for the next instant t-i and the predicted tokens
are compared with those in the new frame. Of course, since we have assumed no
motion, the predicted position and orientation of each token remains unchanged,
but its uncertainty changes and becomes very large. As expected, multiple matches
occur for most of tokens. Techniques based only on the best match usually fail at
this stage, since the nearest segment is not always the correct match. We retain
the two best matches if a token has multiple matches. Furthermore, the strategies
described in this paper are exploited to reduce the matching ambiguities. The
token updates its kinematic parameters using its best match. A new token is
initialized by combining the token and its second best match which is used to
estimate its kinematic parameters. We continue the tracking in the same manner.
Usually the tokens originated from false matching in the preceding instants are
losing their support for existence as more frames are processed, and are eventually
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(Perspective view) (Top view)
Fig. 4. The superposition of the predicted (in solid lines) and the observed (in dashed lines)

segments at time £3

(Perspective view) (Top view)
Fig. 5. The superposition of the predicted (in solid lines) and the observed (in dashed lines)

segments at time <5

deactivated. The number of active tokens after processing each frame is shown
in the second row of Table 1. The number does not become overwhelming, even
though there is a significant increase in the number of scene tokens.

In Fig. 4, we show the superposition of the predicted (in solid lines) and the
observed (in dashed lines) segments at time f3. As can be observed, more active
tokens (in solid lines) exist at this moment: some have been activated due to
multiple matches at time i2 and some just entered the field of view. We observe
that the tokens originated from good matching coincide well with the scene tokens.
After having processed the fourth frame, a number of false tokens disappear, as
shown in Fig. 5, where the predictions for t*, are overlayed on the observations at

As said earlier, the thirteenth frame was taken in a shifted position. Fig-
ure 6 shows the superposition of the predicted (in solid lines) and the observed
(in dashed lines) segments at time <i3. Compared with the results shown in Fig. 4
and Fig. 5, we can observe a relatively big difference between the prediction and
the observation. After several frames, such occasional incoherent motion will be
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(Perspective view) (Top view)
Fig. 6. The superposition of the predicted (in solid lines) and the observed (in dashed lines)

segments at time

(Perspective view) (Top view)
Fig. 7. The superposition of the predicted (in solid lines) and the observed (in dashed lines)

segments at time ti6

compensated for by the algorithm. Figure 7 shows the superposition of the pre-
dicted (in solid lines) and observed (in dashed lines) segments at tie- Quite a good
fitting between the prediction and observation can be observed.

As described in[ll, 12], we can group the individual tokens into objects based
on the motion coherence. Here there is only one object. The final estimate of the
interframe rotation is 1.1 milliradians, or 0.063 degrees. The final estimate of the
interframe translation is 99.52 millimeters. Recall that the supposed displacement
is a pure translation of 100 millimeters.

8 Conclusion
In this paper we have presented our recent work on token tracking in a cluttered
scene in the statistical data association framework. The main steps have been
summarized. We have focused in this paper on several strategies including beam
search for resolving multiple matches, support of existence for discarding false
matches, locking tokens and maximizing local rigidity for handling combinatorial
explosion. We have implemented those strategies in a 3D line segment tracking
algorithm and found them very useful. Some new results have been provided.
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