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Abstract
Regularization of ill-posed problems has been applied in various ways to

surface reconstruction problems. Typically the smoothness term has been
found in an ad hoc manner. In this work the a priori knowledge of the
surface is used to construct the smoothness terms. If all surface normals
are considered equally probable, different smoothness terms can be derived
for different projections using Bayesian estimation. These smoothness terms
implement discontinuous regularization by the Lorentzian estimator under
orthographic and perspective projection, and imply a convex solution space,
if the standard deviation of the noise is smaller than some quantity. Under
stereo projection, occluded areas are punished dependent on the distance
from the cameras, as they are more probable to exist on nearby objects than
on distant objects. A general scheme of developing smoothness terms under
assumptions of isotropy or anisotropy is outlined.

1 Introduction

The problems of depth-extraction or surface reconstruction are ill-posed in the
sense of Hadamard [1]. A typical surface reconstruction problem is to find the
reconstruction R of the data D from the measurements M, when it is known that
the measurement are created by addition of noise N to the data.

M(x) = D(x) + N(x) (1)

To overcome the ill-posedness, regularization is applied. The regularization implies
a reformulation of the ill-posed problem as well-posed by adding a stabilizing term
[2]. This stabilizing term is often called smoothness term, and incorporates some a
priori knowledge of the solution. The solution is found by minimizing a weighing
of the original problem against the smoothness term. Tikhonov [2] uses quadratic
sums of the derivatives of the solution. This implies the minimization of an energy
term, which in the case of the first derivative in the smoothness term yields:
E(R) = E-£)&t&(M, R) + Y2R ̂ RX

 w n e r e R is the solution, subscript x denotes the
derivative according to x, and A is a weighing constant between the data term and
the smoothness term.

Geman and Geman [4] introduces a line process which is used as an alternative
to the smoothness term. The line process is a constant punishment of disconti-
nuities in the solution. The punishment is used in those points, where it yields a
lower energy than the smoothness term. In these points, there is no further pun-
ishment of a high derivative, and the data term will totally govern the solution,
which in these points will have discontinuities. The mathematical formulation is:

J2 (2)
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where ry has to be varied as well as R. P is the constant punishment of the
line process. In Equation 2 the solution is not necessarily unique, neither is the
solution space convex. Geman and Geman finds one of the solutions of low energy
by simulated annealing. Blake and Zisserman [5] reformulates the same strategy
as a thresholding of the smoothness term. This implies the minimization of

where / ( < ) = ( $ '*? < ?
J v ' \ P otherwise

Blake and Zisserman find the solution by the graduated non-convexity algorithm
(GNC), which does not guarantee an optimal solution [6], but is deterministic
and faster than the simulated annealing [9]. The GNC is generalized to other
regularization schemes by Nielsen [7]. Jensen and Nielsen use genetic algorithms
to perform the optimization of integer valued curve fitting using the weak string
[11].

The choice of smoothness term is in the above mentioned case made by con-
venience, and not by any quantitative argumentation. In robust statistics many
other shapes of smoothness terms has been introduced. By tradition a least square
estimation has been used. To make this robust, outliers has to be detected and
not weighed as much as the good data. A survey of methods applied to computer
vision is given by Meer et. al. [10]. One typical method is to use a quadratic
measure for small values of derivatives, a linear for medium values of derivatives
and finally a constant punishment for high values of derivatives.

In neither of the above mentioned works, the smoothness term have been es-
tablished from more exact assumptions than "The derivatives of the solutions are
expected to be small, except in some discontinuity points". Nearly all methods use
some threshold of discontinuities, which has to be known in advance. The solutions
are very sensitive to this parameter, and to the weighing constant between data
and smoothness terms. Furthermore, the implications of the parameter values are
far from intuitive [6]. This work provides a method for the incorporation of a pri-
ori knowledge in depth estimation. If information, which might be of qualitative
nature, about the scene is present, this can be used as a priori information in
the regularization scheme. In an indoor environment, the information, that most
surfaces in the scene often are perpendicular to each other, can be used. This in-
formation (that the indoor world can be modeled as Legoland) is used by Straforini
et. al. in a rule based system, and yields very robust results [15]. In a forest en-
vironment, information about the structure of vertical stems of the trees and the
horizontal ground plane, can be used. The above mentioned a priori knowledge
are of very specialized nature. In general such knowledge is not present. A very
weak assumption is, that the surface normals in the scene are equally distributed
in all directions. This corresponds to the weak isotropy of texture introduced by
Garding [13].

2 Bayesian estimation

Bayesian estimation is a technique, where the Bayesian rules from probabilis-
tic theory is used for minimizing the expectation value of a cost function yield-
ing an optimal estimate. In advance one has to know: A measurement M, the
probabilistic dependency p(M\D) of the measurement on the real value D, an
a priori density of the real values p(D) and a cost function c(R,D), which is
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the cost of choosing R, when D is the real value. From Bayes theorem we get
p(D\M) = p(M\D)p(D)/p(M) where p(M) can be perceived as a normalizing
constant, when the measurement M is known. The mean value C(R\M) of the
cost function, when M has been measured, can be found by integration. The
optimal Bayes estimate of D is the R which minimizes C(R\M).

ffi C(R\M) = inffl f c(R, D)p(D\M)dD (3)

If all wrong decisions are equally bad, and only the exactly correctly estimated
parameter R is considered right, a cost function can be constructed as: c(R,D) =
l-6(\R-D\) where S is the Dirac delta function. The R which minimizes Equation
3 is the one which maximizes the a posteriori probability: supfi p(R\M) In other
words: The Maximum A Posteriori (MAP) estimate is the one which maximizes
the probability of correct decision, but punishes a near miss as much as every other
miss. The MAP estimate is often used in regularization.

Regularization can be formulated as Bayesian estimation. Let us assume that
the measurements are created by addition of uncorrelated noise and an a priori
distribution p(Dx) of the first derivative of the data is given. From Bayes theorem
we get

p(M\D)p{Dx)

P(M) - p(M)

as Dx just is a basis change of D in the discrete case [8]. For a set of measurements
we find

p(D\M) = i

if the measurement is only dependent on the data locally and superscript denotes
the discretisized position x = i and Z is a normalizing constant. The Bayesian
estimate can be found using the MAP cost function if the data dependency and the
a priori distribution of the derivative is given. If the noise is uncorrelated Gaussian
noise, having the same standard deviation a in each point, the measurements will
depend on the real data as: logp(M*'|Di) = (M; - Di)2/2a2 -log Zi, where log Zi

can be omitted. This data dependency will be used in the following.

3 Orthographic projection
Orthographic projection is used as model, when the depth measurements are found
as a measure perpendicular to some axis or plane. As argued above, a general
assumption in depth extraction modules is isotropy of the scene. This means that
no direction (no angle to the image plane) is preferable to others. Because a
frontoparallel area has a larger projection onto the image plane than a tilted area,
it is more likely and is not punished as much. This is formalized in the following.

The angle to the image plane can be measured by the first derivative of the
depth function. Our goal is to establish an a priori distribution of the first deriva-
tive of the depth function Dx (which is the easily measurable quantity) from
distribution of the angle 9 (which is the quantity that initially has been argued
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equally distributed). The orthographic projection of a line parameterized by the
arc length s is

x(s) \ _ ( a + s cos 9
D(s) J ~ \ 6 + ssin0

The equal distribution of 9 in the scene results in an a priori distribution of 9
observed in the projection, which is proportional to the length of a projection of
a unit length.

3 = 0 *

where n = 2 is a normalizing constant. The derivative of the depth D according
to x is constructed as

_ dsdD
dx ds 3 = 0

_ dD dx
~ ~ds'~ds

= tan 9
3 = 0

In general, if a new stochastic variable Y is created from X as Y — <f>(X), where
X is distributed as f(X) and ip = <f>~1, then the distribution g of Y will be

(4)

In this case of orthographic projection we have:

= arctanW => 9(Y = Dx) = \ - ^

This distribution has to be multiplied by the data constraint and the reconstruc-
tion R can be found as the MAP estimate. Because the exponential function is
monotonously increasing, it has its maximum, where the following energy term
E(R) has its minimum:

E(R) = £ ((Af - W)2 + 3a2 log(l + (K)2)) (5)

This means, that the smoothness term is log(l + R%). This is a special case of the
well known Lorentzian estimator. It is a robust estimator yielding discontinuous
regularization [8]. Furthermore, it yields a convex solution space for a2 < y/2/dh,
where h is the sampling distance [8]. It has earlier been used as smoothness
constraint in flow analysis by Black and Anandan [12].

The isotropic regularization has been tested in the 2D case on simulated data.
In Figure 3 it is tested on a sphere on a platform. It shows that the step edges are
preserved, and that the reconstruction is not perfect, but has some small hills. On
the sphere we see, that gradients, which are very high cause spurious discontinuities
to be detected, as the weak string would do. The isotropic regularization yields
results, which in general are as good as those of the weak string, when applied
to step edges. In the example, the solution space is not convex as a = 25/i. The
solutions are found by the Smoothness Focusing GNC algorithm [7].
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4 Perspective Projection
Under perspective projection the isotropy constraint implies other smoothness
constraints than under the orthographic projection. A given angle has a different
probability of being seen, dependent on the position relative to the optical center.
The perspective projection of a line parameterized by the direction 6 and the arc
length s is

where capital letters are world coordinates, D is the depth, and the focal length is
normalized to 1. Calculations [8] similar to those of the orthographic projection,
using the derivatives in s — 0, yields

g(Y = Dx) =
(xDx

It should be noticed, that this is the distribution of the first derivative of the depth,
when x and D are kept constant. To maximize the a posteriori of Dx and D in a
given position of the retina x, we should maximize

p(Dx,D\x) = p(Dx\D,x)p(D\x)

This requires an a priori probability of the depths in a retina point. When this is
unknown, we can overcome the problem by estimating a local mean (or expecta-
tion) value of the depth, and use this in the distribution. This implies, that the
maximization of the a posteriori probability corresponds to minimization of the
smoothness energy

where terms which are constant in Rx has been removed, and R is denoted as
mean value as it is expected to be locally constant. The approximation can be
used when x is small (weak perspective projection). This correspond to the case of
orthographic projection, where the derivative is scaled by the distance. This im-
plies, that the perspective projection near the center of projection yields qualities
similar to the qualities of the orthographic projection.

5 Stereo Projection

The stereo projection is more complicated than the above mentioned projections,
but nevertheless is it possible to carry out the calculation. The stereo projection
is more interesting from a computer vision point of view, as the monocular projec-
tions can only perform depth sensing if a kind of range finding equipment is used.
Under stereo projection, we can find the depths measures directly from matches
in the two images and knowledge of the camera geometry. Before the smoothness
term is derived, we will have to look into the stereo projection, as it is used in this
paper.

When the internal and external geometry of the cameras is known, the problem
of matching features in the two images, is a one dimensional matching problem.
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This is due to the epipolar constraint, which constrains all the scene-points placed
in a plane coinciding with the two optical centers, to be located on the lines in the
image planes, that coincide with the plane [19]. Because of this epipolar constraint,
we will only look into the 2D-to-lD stereo projection.

A stereo projection can be constructed by drawing the curve(s) of matched
points in 2D, and then transform it into a coordinate system in which left and right
camera position are the two perpendicular axes (see Figure 1). In this coordinate
system, the matching curve will be a single valued function m of the position on
the diagonal axis u, if no change of order in matches occur (see Geiger and Girosi
[16]). In this stereo configuration occlusion will be modelled as intervals of u, where

Scene

Figure 1: Stereo projection. The matched curve in the 2D world is transformed
into a coordinate system of perpendicular axes. In this coordinate system will
the matching curve be a single valued function m on the diagonal axis w, if the
matches are not changing order from left to right camera.

^ 1 = 1. Where matches occur, | ^ | < 1. Like in the previous examples, we will
ave to parameterize the possible directions. For simplicity, we will assume, that

the two cameras are identical and the two images planes coincide, thus the two
optical axes are parallel. Using these simplification we can parameterize the stereo
geometry and projected angles by the following parameters (see Figure 2): a is
half the base line, X is the distance to the optical axis of the cyclopic coordinate
system, and Z is the distance from the projection onto the optical axis to the
cyclopic center. This projection can be written as a linear transformation of the
positions XL and XR on the two retinas.

u
m{u)

1 1
- 1 1 (6)

The surface, which is seen in the two cameras is a general curve but can be
approximated to be locally linear and parameterized by a parameter s:

Z(s)
X0 + scos{9)
ZQ - ssin(#)

This leads after calculations similar to those of the previous examples to the fol-
lowing smoothness term:

3 . . 2 72 + (a — X ]2\ (7)

This term can be used as smoothness term in these parts of the stereo images,
where no occlusions are present. The first derivative of the matching function mu
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Left Object;

Figure 2: Stereo projection parameterization. Every point is parameterized by
(Z,X,9), where 9 is the angle to the image planes.

is limited to values in [—1; 1], as larger absolute derivatives will lead to occlusions.
In the smoothness term, the matching function m, and three more parameters are
used. The half base line a is a constant, and yields no problems, except, that it
should be measured in units of focal lengths, as the stereo projection geometry
is scaled into focal length / = 1. The two other parameters, the depth ZQ and
the left-right position Xo can be expressed directly from the matching parameter
u and the matching function m{u). By inversion of Equation 6 and substitution
into Equation 7 we find:

(8)
m m

The last term is a constant and can be omitted without changing the solution. As
in the case of perspective projection, this equation is only valid for locally constant
parameters m and u.

The smoothness term is independent of the base line. It does, however, depend
on the focal length, as u and m is measured in units of the focal length / , and
the position of the principal point, as w is measured as the distance (with sign)
from the principal point. The first term -—^ does, in this way, depend on the
focal length, but not on the position of the principal point. The second term W^L

does not depend on focal length as ^ and thereby -jj^ are independent of / . The
second term does, however, depend on the principal point.

If the viewing field (the ratio of the size of the retina to the focal length)
is small, the second term ^ ^ is in practice much smaller than 1 and can be
approximated to zero:

Es(m) « !
III

This smoothness term takes the same form as the term for the orthographic pro-
jection. This implies, that the properties from the orthographic projection can
be transferred to the stereo projection, when the above approximation is used.
The stereo projection will have a convex solution space if not too much noise is
present, and the smoothness term will imply discontinuous regularization. The
data term, under stereo projection, will rarely imply a convex solution space, but
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often a solution space containing many local minima. This means that a gradient
descend algorithm will not be guaranteed to find the global minimum, no matter
that the smoothness term implies a convex solution space.

In the above theory of the stereo projection, no assumptions of the visibility
of the object has been made. Some points in one image is not visible in the other
image. Whether a point is visible in one, both or non images depends on the
viewing angle 0 and the position. In the total a priori probability distribution
we will have to encounter the fact of occlusion. All the angles 9 which are left-
occluded will appear in the matching function as mu = 1, and the right occluded
will appear as mu = — 1. We find

f — 1 j»OO

/ g(Y = mu)dmu PS / #(y = mu)dmu
J-oo Jl

(9)

when Xo ss 0. The cases where XQ takes other values are outlined in [8].

The constant from Equation 9 times a Dirac delta function has to be added in
Y = ±1 (where the occlusions occur) and the probability of \Y | > 1 is set to zero. It
is obvious, that these Dirac delta functions yields a problem when making a MAP
estimation. In the points mu = ±1, the energy will be minus infinity, which will
totally dominate the solution space. Another cost function, without singularities
has to be used. In Nielsen [8], it is shown, that a pseudo-MAP estimate, which
takes not only the density, but also the local probability volume into account, can
be constructed by a convolution of the a priori distribution by a Gaussian. In
order to make a regularization, we will have to convolute the a priori distribution
by a Gaussian of appropriate standard deviation, and then minimize the energy.
This method might be applied to the occluded stereo problem. Furthermore, is it
shown [7], that the convolution by a Gaussian, yields a Graduated Non-Convexity
algorithm.

6 Anisotropic regularization
In many cases, the world is not isotropic. Some surface normals are more probable
than others. If aerial photos of Denmark is the basis of a stereo analysis, the
wideness might be several kilometers, while the depths are in a range of tens
of meters. Under these circumstances the isotropic constraint is obviously not
fulfilled. If an a priori distribution of the surface normals in the scene is well
known, it can be used to construct smoothness terms corresponding to the MAP
estimation. This scheme is identical to the scheme from the previous sections, we
do only have to substitute the new f(6) into Equation 4. If high density values,
which only represents a small probability volume, are present, the distribution can
be convolved by a Gaussian to obtain the estimate. Furthermore, the a priori
distribution, do not have to be known analytically. It might as well be measured.
If the density of surface normals do not change in time, the result from a previous
reconstruction can be used as a priori in the following frame. In this way an
adaptive regularization scheme is constructed.

7 Conclusion
A theory of using quantitative a priori knowledge is outlined and applied to the
isotropy-constraint in the case of orthographic, perspective and stereo-projection.
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The isotropy constraint implies the well known Lorentzian robust estimator. It
needs only one parameter: The amount of noise, which, if not known in advance,
can be estimated by eg. the technique proposed by Olsen [18]. In the case of stereo
projection occluded areas are punished by an increasing function of the distance, as
they are less likely to occur on distant objects than on nearby objects. The a priori
density function of gradients in the matching function contains singularities in the
occluded case, why MAP estimation is not applicable. An estimation method
and the application to the stereo projection under the isotropy constraint is to be
developed.

The isotropy constraint implies discontinuous regularization, and has a convex
solution space for small amounts of noise. For larger amounts of noise, the solution
space is non-convex, so a more expensive optimization technique has to be applied.
In this paper the GNC by Smoothness Focusing [7] has been used. In future work,
also second order regularization might be included in the theory. The a priori
assumption might be: Every sphere is equally probable, but large spheres have a
larger projection and therefore low curvature is more probable than high curvature.
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Figure 3: Orthographic projected depth data, (a) is the original data. (6) noise
corrupted signal, width SNR = y/2 on the step edges, (c) is the reconstruction,
and (d) is the normalized residual.


