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Abstract

We explore the potential of variance matrices to represent not just statisti-
cal error on object pose estimates but also partially constrained degrees of
freedom. Using an iterated extended Kalman filter as an estimation tool, we
generate, combine and predict partially constrained pose estimates from 3D
range data. We find that partial constraints on the translation component
of pose which occur frequently in practice are handled well by the method.
However, coupled partial constraints between rotation and translation are,
in general, non-linear and cannot be represented by this method.

1 Introduction

Most model-based part recognition or location vision systems establish all model-
to-data pairings during an initial matching phase, and then estimate the pose
from the consistent pairings. This is less than ideal, as insufficient features may
have been segmented to estimate fully the pose, or it may be desirable to improve
the pose estimate by locating additional features using the current pose estimate.
Some features may only provide partial or weak pose constraints.

This paper integrates three themes in computer vision to show how model
matching can be improved. The themes are:

• incremental improvement of pose estimates as new evidence is found,

• a common representation for both statistical error and lack of knowledge and

• use of partial knowledge to guide model matching.

The paper demonstrates some examples of model matching or pose estimation
problems where partial knowledge is integrated and used to improve the quality of
scene understanding. The domain of application used for the examples here is 3D
model matching using 3D image feature data, but the approach can be adapted
for 2D-to-2D and 3D-to-2D problems. The examples shown in the paper are based
on a surface-patch matching system where the data surface patches are extracted
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from range data (by some adaptations of [3]) and the model surfaces are specialised
instances of quadratic surfaces [5].

The foundation of the approach is based on representing uncertainty by the
variance of an assumed normal probability distribution. This by itself is not new
and a number of vision, robotics and tracking projects have followed this approach
[12, 9, 13, 2]. That work has used variance to encode fully constrained but statisti-
cally uncertain poses. The advantage of this approach is that there are well-known
statistical tools for estimation (e.g. the Kalman filter) and decision (e.g. the x2

test) problems.

However, there exists a class of problems where the uncertainty is not entirely
due to statistical errors but has a component which would still be present even if
the available measurements were perfectly accurate. Such problems occur when
there are more parameters to estimate than measurements available - they are un-
derconstrained problems. For example, the correspondence between a model point
and a scene plane, in the sense that the transformed point must lie somewhere in
the plane, is not sufficient to constrain the translational part of the transform even
if the rotational part has been estimated by some other means. These problems
leave degrees of freedom in the estimated transform which it would be convenient
to represent in the same way as statistical uncertainty, i.e. using variance. As long
as the uncertainty due to degrees of freedom is linear in parameter space, we can
do this by introducing one or more large eigenvalues in the variance matrix.

In practice, the non-linear rotational part of a 3D transform is often easier to
constrain than the linear translational part. This is due in part to the robustness
of correspondences between plane surface normals against occlusion and segmen-
tation errors. Correspondences between points (e.g. centre of gravity, boundary
points) which are used to constrain translation are relatively fragile and subject to
occlusion and must sometimes be replaced by partial constraints (such as a match
between a point and a plane). Our approach is useful in these situations when the
rotation is fully constrained but the translation can only be partially constrained.

The theory is given in Section 2. Illustrations matching 3D models against
range images are given in Section 3. Conclusions are in Section 4.

The work reported here builds on techniques which have become standard in
robotics and vision through the work of, among others, groups at INRIA [13] and
Oxford University [9]. The approach to partial evidence representation is similar
to that of [4] and [6] except that there intervals, which are known to be inferior to
variance [10], were used to represent the bounds on the parameters. There are also
links with early research into pose constraints from object relationships as specified
in a robot programming language (RAPT) [11] though that work modeled noise
free relationships.

2 The Statistical Approach to Uncertainty Rep-
resentation

We use a Kalman filter as our basic estimation tool and begin with a brief descrip-
tion of its use. More details can readily be found elsewhere, e.g. [8, 1, 2].

Basically, the filter recursively processes observations to arrive at an estimate
of an unobserved parameter of interest (the state). Knowledge at step k (after
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processing the kth observation) about the state vector, x, is represented by the
estimated mean, x*, and variance, X&, of an assumed Gaussian probability dis-
tribution. Observations, z*, pertaining to the state are themselves uncertain with
means, z t , and variances, Zjt- To link the observations to the state there are
measurement equations of the form

f t(x, Zjt) = 0

which are usually non-linear and often under-constrained (cannot be put in the
form x = gi(zjb))- The iterated extended Kalman filter (IEKF) is an adaptation
of the basic filter to deal with non-linear measurement equations. In both cases
incorporating the kth observation leads to an update of the state estimate to a
new mean, Xfc+i, and a new variance, X^+i. For the IEKF, the Jacaobians dfk/dx.
and dik/dzk (functions of x and z^.), are also needed to perform the linearisation
step. Appendices A and B list the measurement functions (and their Jacobians)
used in this paper and Appendix C lists the Kalman Filter updating used.

The state variance matrix, X, represents the size of an assumed Gaussian
probability distribution in n-dimensional space (n is the dimension of the state
vector, x). Loosely speaking, it can be thought of as representing an n-dimensional
ellipsoid centred on the mean, x, and containing the true state vector, x. The
ellipsoidal axes are parallel to the eigenvectors of X in direction and proportional
to the square roots of the eigenvalues of X in length.

The uncertainty in a parameter estimate which has one linear degree of freedom
can be represented by a variance matrix with a large eigenvalue in the appropriate
direction. Two degrees of freedom in two different directions can be represented
with two large eigenvalues, and so on. In cases where the degree of freedom is
partial (over a finite range) rather than unbounded then suitably sized eigenvalues
can be chosen. Of course, for very small uncertainties, non-linear constraints can
be linearly approximated, and this is the basis of the usefulness of variance as a
general representation of statistical measurement error.

To illustrate what the Kalman filter does, consider the following example (see
also [13]). Suppose a point with unknown position x lies on a line with end-point
e and direction d (a unit vector) at distance A from e and suppose we obtain noisy
observations of e and d (but not A). The degree of freedom inherent in the lack
of information about A can be represented by assigning it a nominal mean, A, and
a large variance, A. The appropriate measurement equation is

x = e +Ad , (1)

and the first order approximation for the variance

X - * S E — T + — A—T + — D — T (2)
de de + OX OX + dd 8D (2}

where E and D are the variances of the estimates for, respectively, e and d. From
(1) the Jacobians can be derived and substituted in (2), which leads, in this case,
to

X = E + AddT + A2D , (3)
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where d is the mean of the estimates for d. If A is very large, X will have a large
eigenvalue for an eigenvector lying in the direction of d.

This sort of computation is very like what the IEKF does. The main differ-
ences are (1) being recursive, the IEKF requires an initial state estimate which
influences the new state estimate and (2) when the measurement equation is non-
linear, the iterative linearisation produces a more accurate result. In the above
example equation (1) would be used as the measurement equation. A nominal
initial estimate could be set up as

x0 = e + Ad ,
Xo = <r2l

(e is the mean of the estimate for e, a is large) and the observation is

z0 =

Zo =

The IEKF computed variance would then be essentially the same as in (3).

As well as generating variance matrices containing degrees of freedom the IEKF
can be used to combine together multiple observations each containing degrees of
freedom into state estimates which are fully constrained. This is one of the main
applications of our approach - two or more partial constraints combined to give a
fuller constraint.

To combine estimates a Kalman filter is required, but for merely generating
variances with degrees of freedom an alternative method can be used. The steps
involved are (1) set up a diagonal matrix where one or more of the entries are large
(corresponding to the degrees of freedom) and the others are small or zero and (2)
rotate this matrix so that the large eigenvalues line up with the directions of the
degrees of freedom. For example, the uncertainty of a point which lies somewhere
along a line whose length is of the order of a could be represented by

e
d
A

• E

0
0

0
D
0

o •

0
A

e2 0
0 e2

0 0

where $ is any rotation matrix which rotates the z-axis into the line direction.
The smaller eigenvalue, €2, can either be chosen to represent measurement error
for a measured quantity or be set to zero for a model parameter1. However, this
method depends on being able to sensibly choose the diagonal entries and the
rotation matrix and it is not always obvious how to do this.

1 Obviously, we avoid singular matrices and instead use a tiny number in place of zero.
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Figure 1: A series of images showing the increased agreement between the mean
position of an object model (dark) and the position of some real data (light) as two
partially constrained subcomponent positions are used to refine the pose estimate.
The model, which consists of one small cube and one large one, and the data are
shown in the two images on the left. Neither subcomponent alone can accurately
estimate the object's pose (third and fourth images) but the combination of both
lead to an accurate estimate (image on the right).

3 Some Applications of Partial Constraints

This section shows how a number of scene understanding problems can be repre-
sented and solved using this uncertainty approach. The first two problems (Sub-
sections 3.1 and 3.2) are examples where partial translation constraints can be
generated from matches between points, one of which is partially constrained.
The last (Subsection 3.3) illustrates the combination of partial pose estimates.

We have also successfully applied our approach to:

• the incorporation of a priori partial constraints, by representing known
knowledge as if it were an observed feature (e.g. knowing a given object
point lies on the working surface is equivalent to measuring it as lying in a
given data plane)

• the combination of partial pose estimates from disparate reference frames
(i.e. integrating different subcomponent pose estimates in the common ref-
erence frame of the object - see Figure 1), and

• image feature position prediction from partial constraints (i.e. using the co-
variance distribution of the estimated parameters to predict a range of pos-
sible positions for a desired feature).

3.1 Planar Patch Matching

Suppose the model matching and reasoning module of a vision system has paired a
number of model and data planar patch surface normals and from these estimated
a rotation by using an IEKF with the measurement equation detailed in Appendix
A. An estimate of the translation has yet to be made but a constraint is avail-
able from the pairing of a model patch central point and an observed (possibly
partially occluded) scene patch. Three (of the six) spatial degrees of freedom are
already constrained. One translational degree of freedom can be constrained by
the requirement that the transformed model point must lie in the plane of the data
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surface and there are loose constraints on the other two because the incomplete
data patch must lie within the boundaries of the transformed model patch.

One way to account for the partial constraint is to create a pairing between
the infinite plane parameters of the model and data patches. However, a better
method, which accounts, at least in a crude way, for the finite size of the patch, is
to create a pairing between the scene point and the model point and give the model
point large variance eigenvalues in the plane of the model patch. The variance of
the model point then has the characteristic elliptical shape

0 0

0 0

where o\ and (?i are the major and minor axes of the smallest ellipse fitting round
the model patch. $ is the rotation matrix which rotates the 2-axis into the surface
normal of the patch and the x-axis into the major axis of the surrounding ellipse.

Having created the point-to-point pairing and attached the model variance as
indicated, the constraint can be processed into a new estimate for the translation
using a Kalman filter and the measurement equation in Appendix B.

3.2 Cylindrical Patch Matching

As for the previous section, we suppose the rotation component of a pose estimate
has already been established, but this time we suppose that the constraint on
translation comes from a pairing between a cylindrical model patch and a cylin-
drical data patch. When rotated and translated into position, the model patch
must have the same axis as the data patch (within measurement errors).

We can account for this partial constraint by pairing up the central point of
the scene patch axis with the central point on the model axis and by giving the
model point a degree of freedom in the direction of the cylinder axis. The variance
matrix of the model point is

0 0
0 0
0 0

0
0

where a is of the order of half the model axis length, and $ is any rotation matrix
which rotates the 2-axis into the data axis. As in the previous subsection, we can
then process the constraint using the measurement equation in Appendix B.

3.3 Integration of Partial Estimates

In general, if model matching has produced some number of direction matches
to constrain the rotation, then there will be just as many partial constraints on
translation by pairing up model and data points, since each surface patch con-
tributes one normal and one central point. The combination of three or more
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Figure 2: A series of images showing the increased agreement between the mean
position of an object model (dark) and the position of some real data (light) as three
partial translation constraints are used to refine the pose estimate. The decreasing
variance of the model position is also depicted by showing the decreasing size of
the uncertainty ellipsoid associated with one of the model vertices.

partial constraints from point matches will, except in degenerate cases, lead to a
fully constrained translation estimate where the eigenvalues of the variance matrix
are primarily determined by the measurement errors.

To achieve this combination of constraints the point-to-point pairings are pro-
cessed recursively using the measurement equation in Appendix B. The output
state estimate from the processing of one pair becomes the input estimate for the
next pair. The initial estimate contains the previously estimated rotation and a
nominal translation estimate (large variance). The final estimate, barring acciden-
tal alignment of degrees of freedom, will not have any large variance eigenvalues.

We illustrate with observations of three surfaces, two planar and one cylindri-
cal, belonging to one object (Figure 2). The rotation mean is estimated using an
SVD analysis of the paired direction means ([7], page 431) and a large variance,
then an IEKF with measurement equation as in Appendix A is used to estimate
the rotation. The translation is also initialised with a large variance but with an
arbitrary mean (the zero vector). In Figure 2 we show the relative position of the
model and data after each of three independent translation constraints have been
incorporated into the pose estimate. When a model surface (dark) is close to a
data surface (light) the graphics program which produced these figures tends to
intermingle dark and light pixels. The intermingling effect shows clearly which
surface, or surfaces, have been used to constrain the translation in each image. In
each image the variance of one of the object model's vertices has been depicted
by drawing an ellipse around the predicted position of the point. As each partial
constraint is processed the ellipse can be seen to shrink along different directions.

4 Conclusions

Large variances are effective for encoding partial translation constraints, and the
Kalman filter is an effective tool for resolving the constraints to produce fully con-
strained pose estimates. Moreover, the pose estimates are very good, as demon-
strated by the interweaving observed between the raw range data and the projected
model surfaces in Figure 2. The method is more accurate than previous methods
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which used bounding intervals to represent uncertainty. However, the method is
not able to cope with non-linear constraints such as the coupled constraints that
are often generated between rotation and translation when there is only a partial
rotation estimate.

Future work could investigate the possibility of analysing the variance matrix
to deduce which large degrees of freedom remain, and thus what type of constraints
would be useful for optimally reducing the uncertainty and where to search in the
image for them.
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Appendix: Partial Derivatives for the IEKF

A: Estimating Rotations from Matched Directions

This is the problem of estimating a exponential representation rotation vector, r
(the product of the rotation axis Q and angle <f>), from pairs of matched vectors,
\ik and vjt, such that vjt is the rotation (by r) of u/t. The state vector is x = r,
the observation vectors are zjt = [vj uJ]T and the measurement equation for each
observation is

f(x, zjt) = Vfc — $ i i i = 0

where

and

H =

The derivatives of the measurement function are

<9x

where
sin (b 7*-

Hi + ~p;(<f> cos <j) - sin<f>) H +dri <j>

H

for i = 1, 2, 3 and the basis matrices H,- are given by

- 2(1 - cos^))H2 + 1~™S<f> (HH, + H,H)
9

[ ]
H2 = 0 0 0 , H 3 =I J
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B: Estimating Translation from Matched Points

This is the problem of estimating the translational component of a 3D transform
from pairs of matched points, p^ and q^, such that qk is the transform (by an
already estimated rotation r and translation t) of p^. The state vector is x =
[rT tT] , the observation vectors are zk = [q£ pk]

T ar>d the measurement equation
for each observation is

f(x, zjt) = cii - $p fc - t = 0

where $ (a function of r, see Appendix A) is the rotation matrix. The Jacobians
are

g- = [I - * ] .
dzk

The derivatives 3$/5r,-, i = 1,2,3 are given above in Appendix A.

C: Kalman Filter Update Equations

This appendix gives the Iterated Extended Kalman Filter updating equations for
the problems described above (using the notation given in the two previous ap-
pendices). Let:

M 9h

Mk = dx~

Wk = dz~Ak {dT)
where A* is the covariance matrix of the observations z* and fjt is evaluated using
the current values {zk, x,_i).

Then, the update equation of extended Kalman filter for producing the current
estimate xk of the state vector is:

and its associated covariance estimate is:

S"1 = S~_\ +

where
Kk = Si-iMKVTt +

is the Kalman gain.
If the estimate x;_i around which the Taylor expansion is performed is too far

from the correct parameter x, linearisation may not be very good. A method to
reduce the linearisation error is the iterated extended Kalman filter. This applies
the update equation for the mean, xk — x,_i— K.kfk(zk, Xj_i), as long as x^—x,_i
is too large, computing at each iteration a new value of K& and Mfc obtained from
a re-linearisation of ft about the new estimate x^.


