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Abstract

We report the first stage of a project aimed at computing visibility scripts for
active inspection applications, in which a robot-mounted sensor observes a
known object from different viewpoints. Visibility scripts describe the optimal
sensor position for a given inspection task and may involve different visibility
requirements, e.g. achieving optimal visibility of a single object feature or
simultaneous visibility of a set of features. We discuss also stereo visibility,
or the optimal placement of a stereo head within the visibility region of a
feature. Stereo visibility is a novel feature in the panorama of comparable
systems and may prove nontrivial in some situations. Script generation is
based on an approximate visibility space, the property sphere. We take into
account several constraints imposed by most real systems, for instance the
limited workspace of a real sensor or the desired resolution at which a feature
must be observed.

1 Introduction

This paper addresses the problem of optimal sensor placement for inspection ap-
plications. The class of applications considered involves inspection systems which
can observe an object from different viewpoints by moving either the sensor or the
object. The sensor is required to acquire an optimal image of one or more features,
or a sequence of images. Optimality is defined by various factors, noticeably feature
visibility and reliability of feature detection. Since the workspace of any robot is
constrained in practice, one might have to contend with suboptimal sensor place-
ments. We call the sequence of optimal sensor placements for a given inspection
task a visibility script.

The first issue in computing visibility scripts is feature visibility: from which re-
gion of the 3-D space around an object is a feature visible. This problem goes hand-
in-hand with the topics of viewer-centered representations, of which aspect graphs
are perhaps the most popular form (see [6] for a recent survey and introduction).
Research in the field has considered mostly image models based on line drawings
with edges as main features ([T],[14],[S]); a few surface-based [9] and component-
based [15] aspect graph algorithms have been reported recently. The main problems
are that implementations of exact techniques are few and the algorithms confined
to rather limiting shapes: complexities are very high, up to O(??9) in the number of
object features [6]; very few authors consider surfaces, which are interesting features
for inspection in practice: and exact aspect graphs can be redundant in practice.
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Notice also that aspects are maximally connected set of viewpoints, whereas feature
visibility regions can contain holes or be disconnected. In practical applications,
therefore, approximate visibility representations are adopted instead of exact as-
pect graphs. Approximate representations ([3],[4],[16],[6]) restrict the set of possible
viewpoints to a sphere of large but finite radius, centered around the object. The
approximate space is a discrete grid of viewpoints, obtained by computing a quasi-
regular tessellation, or geodesic dome, of the sphere. Ray tracing is used to compute
visibility from each viewpoint. The main reason for using approximate representa-
tions in applications is that they are a well-understood class of methods, applicable
to every object shape. The price to be paid is that there is no guarantee that every
significant view is captured given the number of viewpoints (the resolution of the
tessellation). The particular representation we consider in this paper is the property
sphere ([3],[4]), briefly detailed in Section 3.

Many inspection tasks are feature-oriented: one is interested in inspecting ob-
ject parts which correspond to model features. One would also like to predict how
reliably a feature will be detected from a given viewpoint. This leads to the defini-
tion of optimal viewpoint for a feature inspection task ([10],[11],[1],[12]). We have
designed a representation which expresses explicitly the visibility region of a fea-
ture, associates an optimality coefficient to each viewpoint and makes it possible to
access information by feature index. Constraints on the extension of the visibility
space are imposed by the characteristics of the sensing devices, by the feature detec-
tion techniques and by the workspace of the robot on which the sensor is mounted
([l],[2],[11],[13],[12]). Sometimes the sensor adopted is a stereo camera system, for
example as part of a triangulation-based range finder. Computing the optimal sen-
sor placement for a stereo head so that visibility is guaranteed from both cameras
can prove nontrivial. Although important for active inspection, this problem has not
received much attention in the literature of visibility-based sensor placement. We de-
scribe a technique for computing stereo visibility and finding the optimal placement
for a stereo head in Section 7.

2 Definitions

A few key terms and concepts are defined at this point.
Sensors: the techniques described in this paper apply to several types of sensors,
including cyclopean cameras, stereo heads and range finders. In the following, the
sensor's type and geometry is explicitly mentioned when necessary. We will refer
for simplicity to the case of a mobile sensor moving around a fixed object, although
the object could be moved instead.
Features: the features considered are surface patches, corresponding to planar and
curved object faces.
Models: we generate models with the RoboSolid solid modelling package. The
examples in this paper use the model of a widget shown in Figure 1. a moderately
complex industrial part.
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Figure 1: Line-drawing rendering of the widget model.

3 Building the approximate visibility space

The approximate visibility space adopted in this work is the property sphere, intro-
duced in [3]. A property sphere is built by subdividing each face of an icosahedron
in four equilateral triangles and "pushing out" the new vertices obtained onto the
surface of the sphere circumscribed to the icosahedron. By iterating this operation
on each new facet, a set of 20 quadtrees can be generated. The resulting sphere
tessellation is quasi-regular in the sense that it approximates the regularity proper-
ties of the platonic polyhedra. The depth of the quadtrees, which is assumed the
same for all the faces, is called the resolution of the dome. If the resolution of the
initial icosahedron is 0, the total number of facets is 20 * 4res. The main question
about geodesic domes is what resolution should be used. Unnecessary high resolu-
tions result in a wastage of memory; too low resolutions may miss important views.
Typical resolutions used in the literature are 2 and 3 (320 and 1280 dome facets
respectively).

4 The FIR representation

Inspection tasks require information about the visibility region of a feature and the
optimality of the viewpoints inside the region. The representation adopted must
make such information explicit and easily accessible. We have designed such a rep-
resentation, called FIR (for Feature Inspection Representation). Computing the
FIR solves directly the optimal single-feature inspection problem for all features in
the model and makes other tasks easy b}: maintaining explicitly the desired infor-
mation for all the features. The FIR consists of an array of feature visibility region
descriptors (henceforth FVRDs). Each FVRD refers to one feature and consists of
two components. The first is a list of viewpoints from which the feature is visible,
which specifies the feature's visibility region under perspective projections. The sec-
ond is the legion's stability, which depends on the percentage of the property sphere
covered by the region and is given by -^. where r is the number of viewpoints in
the region and Ar the total number of viewpoints in the property sphere. Unstable
regions are poor candidates for sensor positioning even if their feature visibility is
satisfactory. Each viewpoint descriptor in the FVRD list includes the viewpoint's
cartesian and spherical coordinates as well as the following attributes. All attribute
values are in the range [0.1].
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Figure 2: Visibility region for the top plane of the widget at resolution 1, 2 and
shaded according to viewpoint optimality (resolution 1, the darker the better). The
widget is oriented as in Figure 1.

Visibility: the absolute visibility of the feature in pixels, normalized by the image
resolution.
Reliability: the expected reliability with which the feature will be detected from
the viewpoint. Computation of this coefficient depends on the characteristics of the
sensor and feature detector adopted: for instance, low-curvature cylindrical patches
might be confused with planes and assigned low reliability.
Optimality: the global merit of the viewpoint, obtained by combining visibility v
and reliability r:

o = o(i',r) = kvv + kTr

where the weights kv, kT satisfy kv, kT £ [0.1] and kv + kT — 1. These weights express
the relative importance of visibility and reliability according to the particular task.
For instance, if a sequence of images must be acquired to be inspected by an operator
(no feature detection involved), a convenient choice is kr = 0.kv = 1.

The essential algorithm for computing a FIR involves generating a geodesic dome
and raytracing (perspective projections) from each viewpoint on the dome, from
which visibility and reliability are computed for each feature. If too few pixels of a
feature are visible from a viewpoint, no viewpoint descriptor is created. Finally, the
the algorithm evaluates the stability of each FVRD.

The size of a FIR depends on the object considered and on the resolution of the
property sphere. For the widget model in Figure 1 the size is about 20k bytes at
resolution 2 (320 viewpoints) and about 80k bytes at resolution 3 (12S0 viewpoints).
Table 1 in Section 8 gives further examples. The time taken varies with the object,
the dome resolution and the image resolution adopted. With 64x64 images, building
the FIR for the widget took about 25 mins with 320 viewpoints and 2.5 hours with
1280 viewpoints on a SPARC workstation. With 128x128 images, the time is about
3 hours with 320 viewpoints. Notice that an approximate aspect graph is also
computable from the FIR by using a region-growing algorithm on the viewsphere
(see for instance [4]).
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Figure 3: Covisibility region for front cylindrical patch and top L-shaped plane of
the widget (referring to Figure 1) at dome resolution 1.

5 Basic visibility scripts: optimal feature visibil-
ity

The basic visibility script consists of moving the sensor to the optimal viewpoint for
observing a given feature. Our representation has been designed to make this task
particularly easy; computing the representation solves directly the basic visibility
problem for all features. It suffices to pick the best viewpoint in the interesting
feature visibility region. Figure 2 shows the visibility region for the side plane
of the widget (top plane with hole in Figure 1) as a partial geodesic dome. By
associating optimality weights to viewpoints, the FIR supports also the inspection
of sets of features from optimal positions. It is sufficient to identify the set of optimal
viewpoints for all the features involved. The sensor trajectory can then be planned
under appropriate constraints, e.g. that the total distance covered by the sensor is
minimum.

6 Optimal covisibility

Knowledge of covisibility is essential whenever several features must be observed
simultaneously. The shape of a covisibility region is easily found, thanks to the FIR,
by intersecting the visibility regions of all the features involved. The problem reduces
to list intersection. Figure 3 shows the covisibility region of the front cylindrical
patch of the widget and the side L-shaped plane facing up in Figure 1. The stability
of a covisibility region is the same as that of a single-feature visibility region. The
definition of the region's optimality requires more attention. The optimality of" of
a viewpoint i belonging to the covisibility region of features { / i , • • • JW } is computed
as a function of the optimalities O{j of viewpoint i for single-feature visibility of
feature j . Any candidate function for of must meet two requirements. First, the
same number of pixels should be visible simultaneously for all features: it is no good
to see the whole of feature /] and nothing of feature f?. Second. of' should increase
with the number of pixels visible. We assume o,} € [0.1] for all i and j . The function
satisfying these requirements we adopted is



543

Jb S
feature tr . .
' object (a) h e a d

(b)

Figure 4: Stereo visibility can require consideration of the sensor geometry (b) or
not (a). See text.

where o,j and a\ are respectively the mean and variance of the 0{j.

7 Stereo visibility

Stereo visibility can be necessary when the sensor used is a stereo head. Computing
stereo visibility requires that a few conditions are satisfied. Firstly and obviously, a
given feature must be observable from both cameras: therefore both cameras must
lie inside the visibility region of the feature. Secondly, it may be required that the
camera-to-camera distance (or interocular distance) must be compatible with the
distance between two adjacent viewpoints on the property sphere. Thirdly, con-
straints imposed by the robot used might limit the possible attitudes that the stereo
head can assume. All or some of these constraints must be considered according to
the task at hand, as discussed below.

In some cases the stereo system can be approximated with one point and we can
assume that both cameras observe the same image. This happens usually for tasks
requiring global visibility i.e. that the whole object is visible from all viewpoints,
as for instance when checking for missing subparts. The conditions are that the
object-sensor distance is much greater than both the interocular distance and the
object size (see Figure 4a). In this case the probability that both cameras are in the
same visibility region is high and the problem can be reduced to one of single-camera
visibility. This assumption is adopted implicitly in [2].

In some tasks, however, the sensor cannot be approximated by a point. This hap-
pens when the probability that the two cameras end up in different visibility regions
is not negligible. This can occur when the the interocular distance is comparable
with the camera-object distance and therefore with the radius of the viewsphere
(Figure 4b), as is the case in close inspection tasks. In such cases positioning the
stereo head can be nontrivial.

If objects are known a priori, it might be possible to predefine an optimal inspec-
tion direction. For a planar patch, for instance, this can be the normal to the plane
taken through the feature's baricentrum. However, the use of a single direction can
be unsatisfactory: for instance, range-based HK curvature estimators might distort
cylindrical patches according to the angle formed by the local patch normal and the
viewing direction [5]. Moreover, for a stereo head, a single direction does not guar-
antee visibility from both cameras. Our approach is to guarantee stereo visibility
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Bytes allocated
84432
82632
80784
7636S

Saved
62160 (42%)
63960 (44%)
65808 (45%)
70224 (48%)

Threshold
4
6
8
10

Table 1: Minimum visibility constraint: size of the allocated FIR in bytes, mem-
ory saved by visibility thresholding in bytes and as a percentage of the size of the
unthresholded representation, threshold enforced in pixels. The widget model was
raytraced at a resolution of 64x64 from all viewpoints of a medium-resolution prop-
erty sphere (320 nodes).

by finding the optimal position of the stereo head inside the visibility region of a
feature to be inspected, as described below.

First the radius of the property sphere is determined according to the constraints
imposed by the task (see Section 8) and a property sphere generated. If the sensor is
to be placed at the minimum distance from the object which guarantees no collision,
the radius of the property sphere is taken to be the radius of the minimum sphere
enclosing the object. Then the visibility region of the desired feature is computed as
described in Section 4. Notice that the region of space from which it is necessary to
raytrace can be rather small and only a partial dome is generated at close distance
from a feature.

We then try to find the optimal unconstrained position for the stereo head within
the visibility region. To do this, the stereo head is approximated with a linear seg-
ment of length L equal to the camera-to-camera distance (see Figure 4). The algo-
rithm selects pairs of viewpoints which are distant L ± £ from each other, where s
expresses the tolerance introduced by the approximate visibility space and depends
on the resolution of the property sphere. We adopted Korn and Dyer's algorithm [4]
(complexity O(f), f number of viewpoints in the property sphere) for finding all
viewpoints at a fixed distance from a given one. The combined optimality of the
pairs is then evaluated. Optimalities are combined as described for covisibility (Sec-
tion 6). The viewpoint pair maximising the combined optimality is the optimal
sensor position.

Finally, the solution is checked against workspace constraints, which restrict
the possible head rotations around its axis (angle 6 in Figure 4). If the optimal
unconstrained solution does not satisfy the constraints, the first suboptimal solution
which does is chosen. We assume that it is always possible to adjust the cameras'
vergence so that they point to the centre of the feature being inspected (as shown
in Figure 4). In this case, we can assume that the images actually acquired by the
stereo head differ from the images predicted by the FIR only by a rotation.

Notice that only a limited number of candidate viewpoint pairs is usually consid-
ered by the algorithm, thanks to the combined effect of the head geometry constraint
and the close distance implying small partial domes.
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Figure 5: Constrained visibility space for a turntable-based inspection setup.

8 Constraints

In most practical applications, several constraints are imposed on sensor placement.
Constraining factors include the sensor's geometry, the robot's workspace, the fea-
ture detectors adopted. Constraints lead to a reduction of the number of viewpoints
to be considered in any task, but imply additional computation to be enforced. We
describe here only the constraints adopted in the present prototype implementation:
workspace, minimum resolution and minimum visibility. More constraints will be
added to the system in the future.
Robot workspace. Depending on the characteristics of the robot adopted, certain
regions of space will not be accessible to the robot-mounted sensor. The radius
and reachable areas on the property sphere must be constrained accordingly, and
sensor placement computed within the resulting constrained area. At the moment
workspace contraints are expressed through systems of inequalities in spherical co-
ordinates. As an example, Figure 5 shows the area of the property sphere satisfying
the workspace constraints imposed by an inspection system whereby the object sits
on a turntable and is observed by a camera free to move around the object but in a
limited elevation range. The resulting workspace can be easily described in spherical
coordinates by the inequalities 0m;n < 6 < Qmal. where Qmin and 0max depend on
the installation and 0 is the elevation (spherical coordinates).
Minimum visibility. The minimum visibility constraint imposes that the number
of pixels of any feature visible from any viewpoint cannot be less than a threshold
specified by the user. The threshold depends on the requirements of the task consid-
ered. This constraint is enforced during the construction of the FIR (see Section 4)
and inhibits the allocation of viewpoint descriptors for which feature visibility is un-
acceptably low. The benefit introduced by this simple constraint in terms of memory
saved is remarkable. Table 1 shows some figures obtained in our experiments with
the widget model.
Minimum resolution. In some tasks it is desirable to ensure that the interest-
ing feature appears in the image at a minimum resolution, for instance for close
inspection or because the feature detector would not yield reliable results at coarser
resolution. This leads to an upper bound for the distance between the feature and
the camera which can be expressed as follows. Consider the geometry shown in
Figure 6 and let D be the maximum linear dimension of the interesting feature in
millimiters, d the distance between the camera and the feature in millimeters, and



546

camera wofta

• • • • - . . .

, . . . • • " ' "

retina feature

Figure 6: The minimum resolution constraint geometry.

n the feature's size on the retina in pixels. Then the requirement that the fea-
ture's linear resolution in pixels on the retina is at least n implies d < kcam® where
kcam = - is a constant defined by the camera parameters, / the focal length and p
the linear resolution of the retina in millimiters per pixel (supposed homogeneous
for rows and columns). Images taken from a property sphere generated around the
center of the desired feature, with a radius satisfying the above inequality, will meet
the minimum resolution constraint.

9 Conclusions

We have presented some initial developments of a project aimed at generating inspec-
tion scripts, or sequences of optimal sensor positions for feature inspection under
the constraints imposed by a real setup. The problem is of considerable interest
for several active inspection applications. We see the main attractive features of
this work in its explicit consideration of stereo visibility' spaces and of a set of con-
straints which, although partial at present, do occur in real installations. Extensions
are planned in order to cope with more complex workspaces, to incorporate further
constraints, to obtain optimal scripts for sequential inspection of lists of features.
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