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Abstract

Finite elements allow smoothness to be enforced on the measurement of the
image-dependent term in active contours. This improves the stability of the
solution, with less computational cost than is incurred by increasing the
number of elements. Performance is best when the size of the element
matches the scale of the image detail sought.
This property of Finite elements can be used deliberately to select the scale of
the image detail recovered by the active contour. The method offers a way to
reduce the sensitivity of active contours to localised noise.

1 Introduction.
Active contours ("snakes" and "bubbles") provide global solutions to the problem of
finding continuous edges in images [1, 2, 3, 4, 5, 10]. Instead of building connected
edges from point evidence, obtained by purely local operators, the active contour has a
pre-established structure (stiff, elastic strings in the case of "snakes"; elastic loops, under
internal pressure forces, in the case of "bubbles"). Starting from an initial state, the
contour moves under the influence of local forces derived from the image, until these are
in equilibrium with the contour's internal structural forces.

Equilibria occur at minima of the energy potential of the forces acting on the
contour. The energy comprises internal and external factors. In typical applications of
active contours in vision, the internal forces represent the contour's elasticity and
stiffness; the external force is provided by the negative of the magnitude of the gradient
image, acting along the contour. The former forces tend to make the contour short and
smooth; the latter deflects it towards regions of the image with high gradient (i.e. edges).
The energy term to be minimised can be expressed as:

£(v(*) ) = f c c | ^ 2 +
JV \ds

where: v(s) = (x(s),y(s)) defines a parametric curve in the image plane.

The three terms represent the elastic energy, the stiffness energy, and the potential due to
external forces, which in our models is represented by the image intensity function. The
parameters a, fj, and y are weights provided to balance the relative importance of the
terms in (1).
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(c) 32 pts; low stiffness (e) 1024 pts; low stiffness

(b) Magnitude of gradient (d) 32 pts; high stiffness (f) 1024 pts; high stiffness

Figure 1: "Bubbles" solved by Finite Differences

1.1 Finite differences solution
The original method to minimise the energy in Equation (1) was developed using the

Euler method with Finite Differences (FD) [1,2]. This represents the contour as a string
of control points, connected to each other by an elastic, stiff link. The image forces act at
the control points, where the local derivative of the potential (itself usually a derivative -
to emphasise edges) provides a force, deflecting the contour from its natural shape. Each
control point is therefore subject to a force dependent on the image at the control point,
together with forces due to its 2 immediate neighbours (representing elasticity) and its
nearest 4 neighbours (representing stiffness). The global solution to the set of local
problems is given by solving two sets of n^ equations in n^ unknowns (the x & y
coordinates of the n^ control points). Each equation involves 5 unknowns, which leads to
a penta-diagonal system of equations. The problem is profoundly non-linear, in that the
image forces are strictly local, and change in an uncontrolled way as the contour moves.
The system of equations is therefore repeated iteratively, each iteration moving a little
way towards the preferred solution, until stability results.

There are many difficulties with this approach which have limited its application in
practice. Firstly, the image forces are only sampled at the control points; therefore in
order to make the contour sensitive to fine detail in the image, n^ must be large.
Secondly, with large nd, the gap between control points is small, so that the effect of
stiffness (spreading only over 5 points) is only felt on a local scale; this means that a
contour is easily caught by local details in an image, which may not be part of the desired
global structure - e.g. random noise.

These defects of the Finite Differences method are illustrated in Figure 1, using the
implementation reported in [10]. Figure l(a) shows an original image of a mouth; our
purpose is to find and outline the outer edge of the lips. Figure l(b) shows the negative of
the magnitude of the gradient image: we seek to identify the irregular ridge of dark
points around the lips. An elliptical "bubble" was initially located just inside the line of
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the lips, and the balance of elastic and pressure forces caused it to expand, until the
control points were caught on strong local minima (Figures l(c-f)).

In Figure l(c), there are 32 control points (shown as +) which have found good
individual minima, but the bubble ignores the image lying between them. In Figure l(e)
there are 1024 control points (not shown) and the solution follows the local edges more
accurately, but the contour easily becomes snagged on local detail. The problem of
snagging can be overcome in part by increasing the weight of the stiffness term (Figure
l(d & f)), but then fine detail (e.g. at the corner of the mouth) becomes even poorer.

The problem is the familiar one of spatial scale. The image force is proportional to a
second order derivative of the image (change in the gradient image), which is inherently
noisy. Noise can only be combated successfully by integrating information using a scale
of smoothness appropriate to the structure being sought; this is highly context-
dependent, e.g. the comers of the mouth require finer scale than the lips. As normally
implemented, the stiffness and elasticity coefficients in Equation (1) apply globally
(though in our implementation a simple method of biasing the equilibrium shape away
from symmetry is available [10]). The finite differences method gives no natural way to
impose a sense of scale locally.

1.2 Finite element method
An alternative approach to solving the non-linear energy minimisation problem

relies on the use of the Finite Element Method (FEM) [9]. Here, the domain s of the
contour v(s) is divided into a number of elements, in which the elastic, stiffness and
image forces seek their own local minima. Within each element the position of the
contour (x(s),y(s)) is described by a low order polynomial in s; successive elements are
connected together by constraints which seek to enforce low-order continuity in x & y at
their links. A popular choice of function is given by Hermite Cubics, third order curves
having fixed end-points and fixed tangents at their ends, which can therefore be
connected to each other with first order continuity, while retaining second order
continuity within each element [6]. This approach leads to the problem of solving a
system of 2r^ simultaneous equations in 2ng unknowns, where rig is the number of
elements. An important difference between the FEM and FD approaches is that the
image forces act along the entire element, not merely at discrete control points.

The global minimum is sought (as with FD) by moving in the direction of the
solution of a system of linear equations determined by the current position of the
contour, and iterating. At each iteration, the force acting on each element is recomputed,
according to the new position in the image of the element. As before, the process is
iterated until the contour is stable.

A key issue in the FEM is the method used to integrate the image forces along an
element. A simple scheme ([5]) merely approximated the integral by sampling the image
along the element at a fixed number of points. However, this method runs into the same
problems encountered by FD: to be sensitive to fine scale in the image, we need many
small elements, and in coarser scale parts of the image these easily become tangled by
irrelevant local image detail.

More accurate ways to integrate the image forces numerically are available. A
widely used scheme is the Gauss-Legendre n-point rule for choosing the sample points
for numerical integration, and their relative weights [7]. The order of the rule refers to
the number of sample points. If this is high then the estimate of the integral takes account
of more image detail, so that noise has a smaller effect on the overall shape of the
element (which is still constrained to the cubic form).
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Figure 2: Examples ofFEM bubbles applied to images having coarse (top) and fine (bottom) scales.
Left: Initial position; Middle: 12 elements; Right: 48 elements.

The order can be varied according to the length of the elements: in a simple scheme
described here, we make it proportional to the length of the element computed in pixel
units, thus (approximately) ensuring regular steps along the contour of approximately 1
pixel distance. This provides a natural way to guarantee that the image forces pay good
attention to all the detail along the locally-cubic description of the contour. We also
weight the contribution of each element in proportion to its length; this helps to ensure
that elements do not form clusters. By deliberately varying the length of the elements it
therefore becomes possible to control the scale of smoothness adopted by the contour -
and this can be done on a local basis.

2 FEM bubble with adaptable integration.

2.1 Outline of method
The function v(s) is represented as a Hermite Cubic polynomial over each element.

The nodes between elements are shown as + in the relevant Figures. The image energy
term in Equation (1) is derived by numerical integration along the Hermite Cubic, using
the Gauss-Legendre rule [7]. In each element an approximation to the length of the
element (in the (x.y) space) is computed, and the number of sample points is made
approximately proportional to the length in pixels. The gaussian rule determines the
sample points (in the s space) for optimal sampling. The derivative of the image is then
computed at these points, and integrated over s. It is known that the Gauss-Legendre rule
is optimal for approximating integrals since among all integration rules requiring ng

integrand evaluations, it has the highest possible order of accuracy (2ng-1) [7].
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Figure 3: Cpu times [SPARC2] for one iteration of the energy minimisation calculation, using
different number of elements (nj and gauss-points (ng).
The dashed lines link cases with equal numbers of integration points (ng*ne)

At each iteration, the method leads to a hepta-diagonal system of equations in 2ng
unknowns, which is currently solved by a conjugate gradient algorithm, though linear
methods would be faster (e.g. Cholesky [8]). A scaling factor is introduced to weight
elements in proportion to their lengths in the iterated problem, which prevents elements
which collapse from having excessive influence.

2.2 Imposing local smoothness
Figure 2 illustrates bubbles consisting of 12 and 48 elements, applied to synthetic

images of a blurred modulated circle with added gaussian noise (peak signal is 72, and
the noise sd was 20 intensity levels). In each case, the bubble was initially positioned as
shown in Figure 2(a & b) for the 12 element version. The images illustrate two different
scales of spatial detail. Best performance is obtained (Figure 2(c & f)) when the scale of
the element matches the scale of the image. If elements are too coarse (Figure 2(d)), then
the bubble cannot follow the image; if elements are too fine, (Figure 2(e)) then the
system of equations is unnecessarily large, and the elements become over-sensitive to
local noise (note the irregular spacing, as elements have collapsed onto noise points).

2.3 Computational costs
Integration along the elements is less costly than increasing the number of elements.
Figure 3 shows the results of a simulated experiment in which the computational cost per
iteration (averaged over 1000 iterations) was measured as a function of the number of
elements and the number of gauss points used to compute the integral. The algorithm is
close to linear on the number of elements. However, the number of image points used in
the computation (= ng*ne) - and hence the opportunity to integrate out image noise - can
be doubled with significantly less cpu time cost, by increasing the number of gauss
points (moving vertically to the next dashed line in Figure 3).
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Figure 4:
Bubbles of 12 and 48 elements
applied to the image of
Figure 1, with (top) and without
(bottom) inter-element links (+).
Left shows the initial position.

2.4 Demonstration on real images
Figure 4 shows the 12 and 48 element bubbles applied to the magnitude of the

gradient image of lips in Figure l(b), from the initial starting position shown. In
comparison with the FD method of Figure 1, the FEM seems more accurate; it is also far
less sensitive to initial conditions. The 48 element bubble has more accurate performance
at high curvature points (e.g. the corners of the mouth), but the 12 element bubble
recovers a smoother description of the slowly varying regions (edges of lips).

3 Conclusions.
We have demonstrated a new approach to active contours, using FEM with an

adaptable order of integration. This provides a mechanism to integrate the local forces
accurately. A major benefit is that fuller use is made of the local information, and
smoothness can be enforced, without becoming excessively sensitive to noise; a
secondary benefit is that the scale of the detail sought can be imposed on a local basis.

The scheme is also efficient. The well-known FD approach [1, 2] has a
computational cost that increases linearly with the number of control points (those points
where the image is sampled). If the size of an element is well-matched to the local spatial
scale, then many fewer elements are needed than FD control points. The information loss
is avoided by interpolating the element, within the constraint of the cubic form; this
represents a smaller computational burden, since finer sampling does not increase the
number of unknowns in the linearised problem. In iterative schemes, computing speed is
critical. We have found that the FEM requires far fewer iterations than the FD method for
convergence, and in our implementations (the FD on an 1024 processor SIMD multi-
processor, the FEM on a solitary SUN), the FEM is also far faster, and produces better
results from simple initial conditions, though direct comparisons on more similar
implementations have not been made.

The effect of the scaling of the forces by the length of the element is to prevent very
small elements (perhaps contracting onto a purely local feature) from contributing as
much to the global solution as longer elements. This encourages elements to preserve
their lengths, and to avoid elements collapsing onto isolated noise points. In
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Figure 5: Multi-scale FEM with 30 elements applied to a synthetic image:
Left: starting position; Right: final position.

consequence, it is possible to prescribe the initial scale of the contour locally. Figure 5
illustrates performance on a synthetic multi-scale image.

In practical uses of bubbles for image analysis, it will often be the case that some
knowledge is available of the expected structure of the objects of interest. The two
greatest determinants of the form adopted by an active contour are its preferred (blank
image) state, and its initial conditions. The adaptable integration scheme provides a
convenient way to create active models which mimic the expected smoothness of images
of objects as well as their initial expected positions and shapes.
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