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Abstract
Recent years have seen an upsurge of interest in computer handwrit-
ing recognition as a means of making computers accessible to a wider
range of people. A complete system for off-line, automatic recognition
of handwriting is described, which takes word images scanned from a
handwritten page and produces word-level output. Normalisation and
preprocessing methods are described and details of the recurrent error
propagation network and Viterbi decoder used for recognition are given.
Results are reported and compared with those presented by researchers
using other methods.

1 Introduction

As computers become more powerful, and take a greater role in everyday life,
the search continues for ways of integrating them into workplaces by making
them conform to existing conventions of human communication. Though au-
tomatic speech recognition holds out some hope as a natural method of human
to computer communication, for many applications it is unsuited and some of
its promises are slow to be fulfilled. To fill these gaps, much interest is being
shown in handwriting recognition, which offers applications as a direct input
medium and in automatic document processing. Accordingly it is convenient
to divide handwriting recognition systems into on-line, in which the writing is
input directly via an electronic pen, and off-line in which words are written
normally on paper and subsequently input using an optical scanner. This pa-
per investigates the latter, more general, problem in which the data is in the
form of a noisy image written with wide, overlapping pen strokes, rather than
a time-ordered sequence of precisely known pen co-ordinates.

So far, most researchers have concentrated on on-line recognition (now see-
ing commercial application in pen computers) or the recognition of isolated
characters, written separately and usually in capitals (as used in automatic
postcode readers). Bozinovic and Srihari [1,2] have described a system for
off-line cursive script word recognition which uses a feature-based approach,
segmenting the word at potential character boundaries and decoding words by
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a probabilistic method. Edelman, Ullman and Flash [3] describe a more recent
system, based on 'alignment of letter prototypes', which seeks to parametrise
the strokes as splines and compare these with letter prototypes, allowing affine
transformations of the models.

Here we have used a recurrent error propagation network to tackle word
recognition, a technique which avoids the difficult problem of finding a valid
segmentation of the word into letters, and naturally fits a dynamic program-
ming procedure which constrains the search to a lexicon of permitted words.
Real, scanned handwritten data is used in a whole word, single writer system.
Earlier authors who have studied the off-line problem have in fact used data
collected from a digitising tablet.

2 Database Used

The images used were written by a single writer, scanned on a 300dpi, 8 bit
flatbed scanner and transferred to a workstation which was used for all of the
subsequent processing. Words are written surrounded by white space so that
a simple program can search for them before extraction into separate files.
Figure 2 shows one such word.

For this study, the corpus chosen was the set of numbers 'one' to 'twenty',
tens from 'thirty' to 'hundred' plus 'thousand', 'million' and 'zero' all written
in words. These thirty-one words were chosen because, though constituting a
limited vocabulary, they might be considered to form a useful corpus for an
application such as cheque amount verification. Seven exemplars of each of
these words were taken: three to serve as a training set and four as test data.
Subsequently to achieve consistent training of the network, a validation set was
collected which consisted of three exemplars of each word.

3 Preprocessing

To prepare the data for recognition by a network, extensive preprocessing is
required to normalise the data and present it in an appropriate form. A number
of operations are involved in this sifting process. Figure 1 illustrates the whole
process for which each operation is described below.

3.1 Histograms

An important tool used throughout the preprocessing is that of the density
histogram. These are formed by counting the number of black pixels in each
vertical or horizontal line in the image, and plotting these counts as histograms
which are used to identify the baselines of the word. (See figure 2.)

3.2 Baseline Detection

Among the most fundamental features extracted from the raw image data are
the base lines (the lines which run along the top and bottom of a lower case
'o', above an '/' or below a 'y'). It is with these lines that one identifies the
ascenders and descenders so important in determining word shape. We shall
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Figure 1: Schematic of the Recognition System

refer to these as the half, base, upper and lower lines, with a centre line midway
between the half and base lines, as shown in figure 2.

The heuristic used for base line detection, is :
1. Calculate the vertical density histogram.

2. Reject that part of an image likely to be a descender.

3. Find the lowest pixel in each vertical scan line.

4. Carry out moment analysis to find the line of best fit.

5. Reject all outliers, and calculate the new line of best fit, which is consid-
ered to be the base line of the character.

3.3 Slope Correction

Given the best estimate of the base line, we can attempt to straighten the
writing to give it a horizontal baseline. The image is straightened by applica-
tion of a shear transform parallel to the y axis. (See figure 3b.) Now, we can
re-calculate the base line (using a more accurate histogram) and the half line.
These two lines are fundamental to the normalisation used in subsequent pro-
cesses since the distance between the two is taken to be the character height,
and for a. given writer assumed to be proportional to the character width.
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Figure 2: Histograms and Half, Centre and Base Lines.

3.4 Thinning

Having de-skewed and smoothed the image (by convolution with a 2-dimensional
filter), it is thresholded to leave every pixel in one of two states. Then, an itera-
tive thinning algorithm is applied to reduce the lines in the writing to one-pixel
width so that the strokes can be followed later. Algorithms due to Gonzalez
and Wintz [4] and Davies [5] were used to generate lines one pixel wide. (See
figure 3c.)

4 Recognition

Having reduced the image to a standard form, which highlights invariants of the
words and suppresses irrelevant variations, we come to the main task — that of
actually extracting the word information from the image. As described earlier,
a number of approaches have been taken to this problem, but the one used here
is that of error propagation networks, using variations of the basic backprop-
agation algorithm [6] to learn the shapes of letters and to give probabilistic
estimates of letter and word identities. We have investigated two architectures,
but here we shall only describe the more successful recurrent error propagation
network whose design as a time-invariant pattern recogniser makes it suitable
for this application, with the the x axis substituted for the time axis.
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(a) Initial image (b) Slope corrected

(c) Thinned (d) The parametrised data

Figure 3: Successive stages in the preprocessing.

4.1 Parametrisation

Having chosen this recognition method, the preprocessed image needs to be
parametrised in an appropriate manner for input to the network. The parametri-
sation scheme chosen is as follows:

We first divide the area covered by the word into rectangles. There are
sixteen horizontal rows and a variable number of vertical frames of a width pro-
portional to the estimated character width. Thus long words have more frames
than short words, but, a given character will always occupy approximately the
same number. For each of these rectangles, we allocate four bins representing
line angles (vertical, horizontal, and the lines 45 degrees from these.) Given
this framework, we coarse code the lines of the skeleton image:

Working from left to right in the thinned image, we take each stroke (a
stroke being taken to mean a one-pixel wide line between junctions or end
points) and divide it into equal length segments (the length being determined
by the character size) for which the centroid position and angle are calculated.
We now 'fill' the box associated with this segment's (x,y,6) values. Segments
which are not perfectly aligned with the angles of the bins, are coarse coded —
that is they contribute to the two bins representing the closest orientations.

Figure 3d shows the input pattern schematically. In each square, a line
indicates the presence of a line segment at approximately that angle in that
bin. Because of the coarse coding, some line segments contribute to two bins
and this is seen on the 'F stroke which is between the vertical and 45 degrees
so both these lines are shown in the corresponding boxes in Figure 3d.

4.2 Recurrent Networks

Recurrent error propagation networks have been successfully applied to
speech recognition and other dynamic problems which treat a time-varying
signal [7,8]. A recurrent network is well suited to time-invariant pattern recog-
nition because the same processing is performed on each section of the input
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Figure 4: Recurrent Error Propagation Network

stream, but hidden units are available to encode context information about the
preceding signal.

The network is in the form of a single layer of standard perceptrons with sig-
moid activation functions (as described by Rumelhart, Hinton and Williams [6]).
However some of the output units are connected one-to-one to some of the in-
put units with a unit time-delay. (See figure 4a.) The remaining input units
accept the parametrised input described above, one frame at a time, and the
27 output units give letter probabilities for the 26 lower case letters plus a
space character. During the forward pass, successive frames of input data are
presented to the network and results are fed back through the time delay, while
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letter probabilities are read off from the other outputs. To allow the network
to assimilate context information, a delay of several frames is permitted before
reading off the probabilities.

To be able to obtain the correct outputs from the network, we have to
determine the correct values of the internal parameters ('weights') by a train-
ing procedure. Training the network requires 'unfolding' it in time. During
training on a word, the inputs, outputs and feedback activations are stored
for each frame. Then the errors are propagated back using the generalised
delta rule [6], treating the network at different times as different layers of a
multi-layer network (Figure 4b). To give target values for the training, we
require a segmentation of the word into characters. For simplicity, an 'equal
length' segmentation is used initially, where letters are assumed to be of the
same length, though this is not true in practice. When the network performs
reasonably well with this segmentation, we can use its own estimation of the
optimal segmentation, which will be more accurate and enhances subsequent
performance.

Since the network is being used to estimate probabilities, Bridle's [9] Soft-
max formulation is used on the output units. To improve performance and
speed of convergence of the network we have made use of Jacobs' delta-bar-
delta update rule [10], which gives each weight a variable training rate. Further
improvements were obtained when Robinson and Fallside's [11] modifications
to this rule were used. In order to achieve the optimum training time for the
network, a validation procedure is used, whereby the network is tested on the
validation set between periods of training. When recognition rates start to tail
off, the network is considered trained and is tested on the test set.

5 Post-processing

The output of the network is in the form of probability estimates for each of
the 27 categories in each of the frames. From this data we need to decide
which word was written. This is achieved using dynamic programming [12]
which relies on the principal of optimality, in the Viterbi algorithm to find a
best match. We create a Markov model for each word in our vocabulary, with
one state per letter, each state containing the probability that the data so far
was generated by the preceding letters in that model. For each new frame, we
take the network's probability estimates and multiply each state's probability
by the probability of the corresponding letter. Transitions are allowed only
from one state to itself or to the next state. After the last frame of data has
been processed, the final state of each word model contains the probability that
the observed data was produced by that model. By choosing the maximum of
these likelihood estimators, if our model is good, we have a good estimate of
the identity of the original word.

The Viterbi decoder can be improved by allocating transition probabilities
which affect the average length of each letter. A simple durational model
is included in the Viterbi decoder used, by giving each letter two successive
identical states and thus forcing the minimum duration to be two frames.
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6 Results

The system performance is judged by the number of words in the test set which
are correctly identified, and these are quoted as a percentage of the 124 test
words used. Using a network with 40 feedback units and 64 inputs/frame, a
73.4% recognition was obtained. Though the corpus used so far has only a small
(31 word) vocabulary, we can investigate the system's scaling performance by
testing the same data with a larger lexicon. This extended lexicon is created
using the most common words in the LOB (Lancaster-Oslo/Bergen) corpus [13]
to supplement the numbers lexicon. Using this lexicon the recognition rate was
60.4%.

7 Conclusions

The above results show that the method of recurrent error propagation networks
can be applied successfully to the task of off-line cursive script recognition.
Though comparison of results with other researchers is difficult (because of the
difference in experimental details, the actual handwriting used and the method
of data collection) we might note here the results which have been published for
this problem . Bozinovic and Srihari achieved a 78% recognition rate with a 780
word lexicon [1] and Edelman, Ullman and Flash [3] quote a 50% recognition
rate for whole words on a 30,000 word vocabulary.

Further improvements can be expected by adjustments in the preprocessing
and parametrisation and also by the introduction of a language model, such as
those already used successfully in the domain of speech recognition.
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