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Abstract
A method of motion parameter estimation for AGV's is developed based
on a new trajectory constraint algorithm. It is assumed that the ve-
hicle will follow a circular path over the vision sampling interval. The
algorithm has been found to be more effective and consistent than least
squares estimators when the motion obeys the trajectory constraint. Re-
liable estimates of the motion parameters can even be made from indi-
vidual data pairs. In this way, a static world can be segmented from
moving objects, and so the motion parameters can be obtained using the
stationary points alone.

In practice the vehicle will not necessarily follow a circular path, and
hence there may be a bias in the parameter estimates. Experiments
were carried out using simulated data, where the true trajectory was a
clothoid, to investigate the robustness of the algorithm when the trajec-
tory constraint is violated.

1 Motion Parameter Recovery
The prime objective of the work is to estimate the rotation and translation
parameters of a vehicle using a pair of stereo images. Corners are found in the
images using the Plessey group algorithm [1]. These are matched to form a 3D
point based map of the robot's environment [6]. The vehicle then moves in the
ground plane. The procedure is repeated for the new coordinate frame of the
AGV.

A linked list of the corners qj observed at time t and their corresponding
coordinates pj observed at t + 1 is formed.

The motion parameters R and T are found by solution of the equation

qi = RPi + T (1)

Most algorithms achieve this using the principle of least squares to esti-
mate the rotation matrix R. The translation vector T is then obtained from
equation(l).

It has been observed by many authors [3, 5] that although the vehicle moves
smoothly, the estimated paths are very erratic and noisy. Such trajectories are
impossible. This is due to the sensitivity of least squares methods in general to
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noise, causing the estimate of R to be significantly degraded. This is magnified
when solving for T using equation (1). The points qj and pjare usually distant
from the vehicle, so a small error in R will be amplified through to yield a large
error in T.

Our proposal was to constrain the parameters by some assumptions [5]
regarding the dynamics of the vehicle. A clear constraint on the motion would
be that, if it does not skid, the vehicle will always move in the direction it
is heading. It seems reasonable to assume also that the rate of change of
steering is small. So, provided the vision sampling rate is sufficiently fast, one
can assume that the rate of change of steering is approximately zero over the
sampling interval. This means the vehicle is travelling along a path of constant
curvature, or a circle, between samples.

A geometrical analysis [5] shows that, when moving along a circular arc,
the three motion parameters can be related by

tx = tttan- (2)

Expanding equation (1), there are three equations and three unknowns. The
parameters can be found analytically.

This method has been found to be a considerable improvement on least
squares in the estimation of lateral motion and rotation for motion obeying the
circular constraint. There is little change in the accuracy of the depth motion
parameter estimate.

The motion parameters can be estimated from each individual data pair.
This property can be used to segment [4] moving objects from a static back-
ground. The estimates made using stationary points will form a cluster in
the motion parameter space. The corners on an object moving arbitrarily in
the scene will not in general satisfy the trajectory constraint. The motion pa-
rameters obtained using these points will be scattered widely in the motion
parameter space.

Each of the motion parameters are arranged in ascending order of the head-
ing parameter 6. A threshold based on the variance of 6 is set up such that
if two adjacent motion parameters in the ordered list represent the vehicle's
motion, their difference in heading is almost certainly below the threshold.
Another threshold Lth is set up on the minimum length of a group. This is to
avoid groupings between consecutive points which coincidentally have similar
headings rather than because they are coherent. If both 6th and Lth are set up
appropriately, only one cluster should be obtained with members representing
the motion parameters calculated from the static world.

For a vehicle to follow a planned trajectory, obeying the trajectory con-
straint, would require instananeous steering at the moment of sampling. This
is, of course, impossible. There will, therefore, always be a bias in the esti-
mates of the motion parameters. It is necessary therefore to investigate the
effect that violation of this assumption has upon parameter estimation and
scene segmentation.
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2 Simulated Experiments

2.1 Trajectory Generation

A series of experiments were carried out in which the "true" motion of the
vehicle was a clothoid. This a function [2] whose curvature c varies linearly
with respect to the distance s moved along it.

c(s) = ks + Co (3)

where k is known as the sharpness coefficient. The direction of heading is
therefore

[' ks2

Q(s) = / (ks + co)ds = —- + cos + #o (4)
Jo l

A set of clothoids is illustrated in figure (1). The larger the coefficient k, the
tighter will be the curve.

The parameter k can be thought of as representing, physically, the rate of
steering. It is however quite hard to grasp what any particular value of A; will
mean.

A commonly desired trajectory would be to join two straight lines at right
angles to each other. A solution is a clothoid pair. This is a trajectory that
starts with a coefficient k until a turn of 45° is achieved, it then continues with
sharpness —k until the total change in heading is 90°. The distance tz moved
to join Po to P\ for a certain sharpness k gives a better intuitive grasp of the
sharpness of the curve than the value of k itself.

It is noted that a clothoid will not in reality be the true trajectory. It is
used here, simply because it represents a trajectory that does not obey the
constraint of a constant curvature.

2.2 Data Generation

At time t, a set of 3D points were generated in front of the vehicle. All the
coordinates were generated using independent Gaussian distributions.

Assume that at time t+1 the vehicle has moved to a new location. The mo-
tion parameters were calculated. Using these parameters, the points generated
at time t were mapped onto the vehicles new local coordinate frame at time
t + 1. Each point at t + 1 had a known correspondence with a point at time
t. Points which could not be seen by the vehicle at both times were rejected.
Data were generated until a predetermined number, in this case 20, were visible
to the vehicle before and after motion.

The two sets of points were then transformed into left and right camera
images for times t and t + 1, using the exact calibration file. Each image was
then blurred to produce two sets of 3D data points, with known correspon-
dences. The motion parameters were then estimated using both the trajectory
constraint and the least squares algorithms.
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2.3 Experimental Results
2.3.1 The Effect of Violating the Trajectory Constraint on Estimating

Motion Parameters

Experiments were carried out to investigate the effect of violating the trajectory
constraint on parameter estimation. In each of the experiments the vehicle
moved a distance of 250mm along the curve. This is equivalent to moving at
1.25m/s with a vision sampling rate of 5Hz

The vehicle turned through 5.73° over the sampling interval, following sev-
eral trajectories. These had sharpness coefficients (see equation (3)) of 0 (ie a
circle), 1 x 10~6, 2 x 10~6, 3 x 10~6 and 4 x 10~6. Clothoid pairs of such sharp-
ness would join two perpendicular straight lines in oom, 1.5m, 1.2m, 1.0m and
0.8m respectively. Clothoids with corresponding positive sharpness coefficients
are illustrated in figure 1. Estimates of the bias and standard error were made
using 50 identical samples of each movement.

The bias and standard error for the parameter estimates for these experi-
ments can be seen in Tables 1 to 3. The results of an individual experiment
where k — 4 x 10~6 can be seen in figures 2, 3 and 4.

The estimates obtained using least squares appear to be unbiased, but con-
sistently noisier than those obtained using the trajectory constraint method.

It is noted that there is a bias in the estimates of 9 (see table 1 and figure 2)
for the trajectory constraint method. This increases with the degree to which
the circular assumption is violated and arises because equation (2) is no longer
valid. For motion along a clothoid trajectory the direction of heading is given
by

J.,2

The Trajectory Constraint Method assumes that 9 is given by

*(«)«« = c's (6)

where c' is some constant value. Therefore, the bias is given by

(0-0est) = ^- + (cO-c')s (7)

One would therefore expect the bias to be linear with respect to k This is shown
in figure 5.

Results for estimating the depth parameter can be seen in table 2 and figure
3. There was little difference in the estimates of tz for either technique. For
small 9, the error in tz is given by

cpz
0)0 + cqz + cpx9- cpz (8)

" 1The bias is caused by the terms in 9, but these are small, of the order 10
cqz and cpz will be of the order 101 to 102 and since the error in each estimate
will be dominated by these terms. iz is effectively unbiased.

Any improvement in the estimates of tx and 9 will have little effect on the tz
estimate. The accuracy of ts will only will be significantly improved by better
error modelling of the vision data.
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Sharpness
0

1 x 10~6

2 x lO-6

3 x lO-6

4 x 10-6

6°
true
5.73
5.73
5.73
5.73
5.73

LS2D
bias
-0.01
-0.005
0.0037
0.0039
0.014

sd
0.08
0.039
0.062
0.065
0.063

traj
bias

0.0005
-0.043
-0.077
-0.122
-0.159

sd
0.008
0.013
0.016
0.023
0.029

Table 1: Bias and Standard Deviation for Estimates of 6 for Increasing Viola-
tion of Trajectory Constraint, Btrut * O.lrad

Sharpness
0

1 x 10"6

2 x 1O-6

3 x 10"6

4 x 10"6

tz(mm)
true
249.6
249.7
249.8
249.8
249.9

LS2D
bias
0.78
0.85
-0.33
-0.59
0.03

sd
2.27
2.46
2.57
2.37
2.73

traj
bias
0.74
0.90
-0.36
-0.60
-0.17

sd
2.17
2.48
2.69
2.46
2.85

Table 2: Bias and Standard Deviation for Estimates of tz for Increasing Viola-
tion of Trajectory Constraint, 9true « 0.1 rad

Sharpness
0

1 x lO-6

2 x lO-6

3 x lO-6

4x 10-6

tx[mm)
true
12.50
11.20
9.90
8.60
7.30

LS2D
bias
0.29
0.20

-0.097
-0.15
-0.58

sd
2.97
1.33
2.58
2.55
2.47

traj
bias
0.005
1.21
2.43
3.64
4.87

sd
0.11
0.098
0.11
0.13
0.14

Table 3: Bias and Standard Deviation for Estimates of tx for Increasing Viola-
tion of Trajectory Constraint, #true ** 0.1 rad

Sharpness
0

1 x lO-6

2 x lO-6

3 x lO-6

4 x 10"6

6°
true
16.12
16.12
16.12
16.12
16.12

LS2D
bias

-0.0003
0.004

-0.0019
0.0039
-0.009

sd
0.05
0.057
0.068
0.046
0.044

traj
bias

0.0008
-0.030
-0.062
-0.095
-0.13

sd
0.0043
0.0059
0.0072
0.0078
0.010

Table 4: Bias and Standard Deviation for Estimates of 6 for Increasing Viola-
tion of Trajectory Constraint, 0(rue ^ 0.281ra<i

Sharpness
0

1 x lO-6

2 x lO-6

3 x lO-6

4 x 10-6

tx{mm)
true
34.96
33.67
32.39
31.10
29.80

LS2D
bias
-0.12
-0.18
0.20
-0.07
0.37

sd
2.17
2.45
3.07
2.06
2.05

traj
bias
-0.13
1.23
2.51
3.73
4.83

sd
0.37
0.47
0.47
0.38
0.34

Table 5: Bias and Standard Deviation for Estimates of tx for Increasing Viola-
tion of Trajectory Constraint, 6true « 0.281rad
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Distance
100
200
300
400

e°
true
16.11
16.11
16.10
16.10

LS2D
bias
0.004
0.0062
0.0008
0.001

sd
0.03
0.032
0.06
0.037

traj
bias

-0.005
-0.033
-0.11
-0.26

sd
0.004
0.004
0.01

0.021

Table 6: Bias and Standard Deviation for Estimates of 9 for Increasing Distance
Moved over Sampling Interval , 9true * 0.281rad

Distance
100
200
300
400

txmm
true
13.82
26.62
37.45
45.30

LS2D
bias
-0.20
-0.21
-0.21
-0.016

sd
1.43
1.41
2.56
1.56

traj
bias
0.13
1.36
4.02
9.68

sd
0.40
0.42
0.34
0.39

Table 7: Bias and Standard Deviation for Estimates of tx for Increasing Dis-
tance Moved over Sampling Interval , 9irue « 0.281rad

The estimation of the lateral motion parameter was then examined. The
results can be seen in table 3 and figure 4. The estimates made using the
trajectory constraint method were biased. Again though, they were smoother
than those made using least squares. For small 6, the error in tx is given by

tx — CQX Cnxi-qx px (9)

The only term with bias is 9, therefore the bias in tx is given by cpz9. The bias
in the estimates of lateral motion is therefore linear with respect to the bias in
9. This is illustrated in figure 6. The bias appears large with respect to tx. It
is however small with respect to the total distance travelled over the sampling
interval. When viewed in this context the bias is very small.

A similar set of experiments was carried out for a rotation of approximately
16" over the same sampling interval as before. The bias and standard deviation
for both methods of estimation can be seen in tables 4 and 5. The Least Squares
estimates are more noisy but unbiased. There seems to be little change in the
accuracy in the estimates obtained for the trajectory constraint method for the
larger rotation, although the absolute value of the parameters has changed.
The bias in terms of the total distance moved is the same as for the smaller
turn. This suggests that the bias in 8 and tx is a function of the degree of
violation and sampling rate alone.

2.3.2 The Effect of Sampling Rate on Parameter Estimation for Motion
Violating the Trajectory Constraint

In these experiments a clothoid of sharpness 2 x 10~6 was used. The vehicle
turned through approximately 16° over the sampling interval. In each exper-
iment the total distance s moved over a sampling interval was different. As
s = Vt, this investigates the effect of the sampling rate and vehicle speed on
parameter estimation.
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The results for 6 and lateral motion can be seen in tables 6 and 7. The least
squares estimates seem to be unaffected by the sampling interval. However, the
bias in the estimates obtained using the trajectory constraint method grows
sharply with the distance moved between samples. This is illustrated in figure
7. The bias in tx is small though, compared to the distance moved over the
sampling interval.

2.3.3 The Effect of Violation of the Trajectory Constraint on Scene
Segmentation

The trajectory constrained method yields very accurate estimates of the motion
even when applied to single static data pairs. This property can be exploited to
segment moving objects from a static background. It is necessary to investigate
the effect a non circular trajectory has upon scene segmentation.

The background data, consisting of 20 points, were generated as before. The
moving object was generated using a 3D Gaussian generator, typically centred
between 2000-2500mm in front of the vehicle. The object was represented by
10 points. Given the movement of the object, a corresponding set was obtained
with respect to the vehicle's new position. A linked list was then produced
including both the background and the object points. To illustrate how the
segmentation was achieved, only one vehicle movement was recorded.

In the first experiment the vehicle moved along a clothoid of sharpness
k — 2 x 10~6. The motion parameters were 9 = 5.73",tx = 9.90mm and
tz = 249.8mm. The object moved 100mm horizontally with respect to the
position of the vehicle at time t. The estimates of of tx and tz obtained by
applying the trajectory constrained method to each individual data pair can
be seen in figure 8. It is clear that a group of the points lie in a straight line.

The clustering algorithm described in [4] was applied to these estimates
with 0th = 0.03° and Lth = 5. All 20 of the stationary points in the scene
formed a cluster, and the trajectory constraint method was used to estimate
the motion parameters using these alone.

The data is clustered on the basis that the variance of the parameter 0 is
small. An experiment was carried out to investigate how the variance of the
estimates of 6 from individual data points was affected by increased violation
of the trajectory consraint. The standard deviation plotted against sharpness
coefficient can be seen in figure 9. The standard deviation does not seem to be
increased greatly by violation of the trajectory constraint. So, for reasonable
trajectories successful segmentation can be achieved.

3 Conclusions

A slight bias is inherent in the trajectory constraint method when the vehicle
is not following a circular path as equation (2) is no longer strictly valid. It is
however, extremely small for reasonable sampling rates.

Segmentation was only very mildly affected by violation of the trajectory
constraint. For clothoids of reasonable sharpness, segmentation is successful,
and so very accurate estimates of the motion parameters can still be obtained
in the presence of moving objects.
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Figure 1: A Set of Clothoids
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