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Abstract
This paper describes a method for measuring the intrinsic parameters of a camera.
If aspect ratio is already known, the method requires two images of a plane;
if aspect ratio is not known, the method requires three images of the plane.
(Equivalently, one image of n planes could be used instead of n images of one
plane). The plane must be marked with four points in known configuration.

1 Introduction

This paper addresses the measurement of a camera’s intrinsic parameters, Figure 1.
Main references for camera calibration include [7], [4]. The underlying theme in the
calibration processing described here is the use of vanishing point and vanishing line
information. Related methods are [3], [8], [2].
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Figure 1: Intrinsic parameters. The camera's focal point is C. The perpendicular
projection of C onto the image plane is the principal point P. Fhe distance CP is the
focal length. On the image plane, the ratio of unit lengths along the y- and x-axes is
the aspect ratio.

Section 2 describes some key concepts used in the calibration, sections 3 to 6 cover
the calibration itself, and section 7 contains the results.

2 Key Concepts

Some important ideas from projective geometry are reviewed here. See [6] for fuller
discussion.

Consider a set of parallel lines on a projective plane, Figure 2 - the lines intersect
at infinity, at an ideal point. There is a unique association between parallel lines of a
given direction and the corresponding ideal point (in this sense, an ideal point can be
regarded as specifying a direction). The set of all the ideal points on a projective plane
constitutes an ideal line.
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b oseeen ;ulme with parallel lines
Figure 2: Parallel lines on a projective plane have a well-defined intersection point at
infinity, at an ideal point.

The image of an ideal point is a vanishing point, Figure 3. This figure also shows a
standard result from projective geometry - the line C'V' through the camera focal point
and the vanishing point is parallel to the lines in the scene which have given rise to the
vanishing point.

vanishing point V, image of ideal point I

= %, plane with paraliel lines

Figure 3: A camera with focal point C views a set of parallel lines on the plane m. The
parallel lines intersect at the ideal point 1. The corresponding image lines converge to
the vanishing point V, which is the image of 1. Note that the ray C'V is parallel to the
lines in the scene.

The other main idea in the work concerns the choice of coordinate frame for the
processing. Figure 4 shows a set of points ¢; on the image plane and the corresponding
points Q; on a plane = in the scene. The projectivity from the image plane to 7
is denoted o and the inverse projectivity from = to the image plane is a~!. The
coordinates of an image point g,, and the coordinates of the corresponding scene point
Q,, are related by Qn = aqn and qn = o~ Qn. This can be treated conceptually as
if there is a single point which has coordinates qn in the image coordinate frame, and
Qn in a coordinate frame based on 7. Thus « and o~ can be regarded as operators
which describe a change of coordinate frame. This conceptual treatment is the one
adopted for the rest of the paper.

3 Finding the Principal Point - Overview

The intrinsic parameters of the camera are found sequentially, starting with the principal
point. This section is an overview of the method for finding the principal point, while
a step-by-step description is given in Section 4.

Consider a camera with focal point C and principal point P viewing a plane .
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Figure 4: A camera views a plane = in the scene. The projectivities between the image
plane and © are o and o™, in the directions shown. As described in the text, o and
o~ ! can be regarded as operators which transform the coordinates of a point between
the image coordinate frame and a coordinate frame based on .

The vanishing line of = on the image plane is L, Figure 5a. The question is whether it
is possible to use L to determine the unknown principal point P. Clearly, line L on its
own is insufficient for this. However, there is a distinguished point on L also shown in
Figure 5a - this is the vanishing point V4 on L at infinity on the image plane. It will be
shown that V4 can be used to compute a second vanishing point Vg on L, Figure 5b,
and the perpendicular to L at Vi passes through P. Thus, given one image of a plane,
the position of P is constrained to lie upon a line M; given two or more images of
planes in different orientations, the position of P is given by the point of intersection
of the set of lines M;. (Equivalently, one image of n planes can be used instead of n
images of one plane).

(2) (b)

I o - SN TV
-— _—\—-—-—.____ ___ -— \E’\ -
offto VA e | _T offto VA g, "] s
at infinity P at infinity P
offto VA 7 off to VA
at infinity : at infinity
image image

Figure 5: (a) The image contains the principal point P, and the vanishing line L
measured for a plane in the scene. Any point on L is a vanishing point - the vanishing
pointwhich is on L at infinity on the image plane is V 4. (As shown, one can travel to
V 4 at infinity by going in either direction along L.)

(b) An important vanishing point on L is V g which has the property that the perpen-
dicular to L at V g passes through the principal point P.
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4 Finding the Principal Point - Step-By-Step

(a) Take an image of a plane as shown in Figure 4. Compute the projectivity « from
the image plane to =, and the inverse projectivity a~! from 7 to the image plane. A
method for computing a projectivity is given in appendix A. The computation requires
four image points, together with the coordinates of the corresponding scene points in
a coordinate frame based on 7 (the scale of the configuration of the scene points is
immaterial), no three of the four points to be collinear. Apply o to the coordinates
of the ideal line of 7 in order to obtain the coordinates of the vanishing line L of 0N
the image plane.! See Figure 6.

(b) Find the intersection point V4 of L with the ideal line of the image plane.

(c) Apply « to the coordinates of V4 to obtain the coordinates of the corresponding
ideal point I4 on the plane .

(d) As pointed out in Section 2, an ideal point such as I4 can be associated with
a direction on the projective plane. Call the direction d 5. Use I4 to compute Ip
with associated direction dg, such that d 4 and dg are orthogonal. Specifically,
if the homogeneous coordinates of I, are (a, b,0), then a convenient choice for the
homogeneous coordinates of I is (—b, a,0).

(e) Apply o~ to the coordinates of Ip to obtain the coordinates of the correspond-
ing vanishing point Vg on the image plane.

To see that Vg has the property shown in Figure 5, that the perpendicular to L at
Vg passes through the principal point P, consider the following argument using Figure
6

(i) Line L is perpendicular to C P, which follows from the definition of P (Section
1) and the fact that L lies on the image plane.

(ii) Line L passes through V4 and therefore through I 4 (because V4 is the image
of I4). Thus L has direction d 4 , the direction associated with I 4. Line C'Vp passes
through Vg and therefore throuAh Ip (because Vp is the image of Ig). Thus C'Vp has
direction dg, the direction assoc:ated with Ig. It follows that L is perpendicular to
CVpg.

(iii) The plane CPVp is perpendicular to L because both CP and CVp are
perpendicular to L. Therefore, any perpendicular to L at Vj is in the plane CPVp.
Therefore, the perpendicular to L at Vg which is on the image plane passes through P.

In summary, note that a key step in the processing is the generation of the point
Vg such that the line C'Vjp is perpendicular to L. The route to finding Vg might seem
tortuous. It is necessary because, when working projectively on the image plane, it is
not possible to compute a perpendicular such as L and C'Vg by making use of a point
C which is off the image plane. By shifting the coordinate frame to , it is possible to
bring in the perpendicularity condition using only ideal points which are on the plane
, and then to transform back to the image plane where the required condition that L
is perpendicular to C'Vg will hold.

5 Finding the Focal Length

Figure 7a shows the information available when viewing a plane, following the pro-
cessing in Section 4 - the vanishing line L of the plane, the special vanishing point

T is the transpose of a. Note that the projectivity a—! between 7 and the image plane is a point
pr_:lajeclivily; when operating on a line, as here, the corresponding line projectivity must be used and this is
. See [6].
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Figure 6: This figure shows all the information involved in computing the vanishing
point V. First vanishing point V 5 is found. This is the image of the ideal point 14, so
VA can be used to compute the coordinates of 15. Then lg is found using the constraint
that the directions associated with 15 and Ig are perpendicular. The image of Ig is Vg,
so Ig can be used to compute the coordinates of Vg.

Vg described in Sections 3 and 4, and the principal point P. Figure 7b includes one
further piece of information, a vanishing point V¢ lying on L such that angle Vg C'V¢
is 45°, to be used in the computation of the focal length,

V¢ is found by the same method for computing Vg from V4 in Section 4 - recall
the three stages (a) V4 was used to compute the coordinates of the corresponding ideal
point I 4, (b) I4 was used to compute I'g such that the directions associated with I4
and Ip were perpendicular, and (c) Ip was used to compute the coordinates of the
corresponding vanishing point V. We apply the same method here to compute V¢
from Vp, the only difference lying in the second stage - the ideal point Ip is used to
compute I such that the directions associated with /g and I¢ are at 45° (this is just
as straightforward as computing perpendicular directions).

Once V¢ is known, the focal length can be found from simple trigonometry. The
distance Vg V¢ is known, and this is equal to the distance C'Vg. Thus, the lengths of
sides CVp and Vg P of the right-angle triangle C PVp are known, and the length C P
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Figure 7: (a) This figure shows just that part of the information in Figure 6 which is
to be used in the computation of focal length. (b) One extra piece of information is
also used when computing focal length - the point V ¢ which lies on L such that angle
VBCVC is45°,

(which is the focal length) can be computed.

6 Finding the Aspect Ratio

It has been assumed so far that the aspect ratio of the image has been corrected. If
aspect ratio is unknown, it can be computed in the following way.

Consider the method for computing the principal point in Sections 3 and 4 - a set of
“constraint lines” is generated, one from each image, and these lines are concurrent at
the principal point. If the aspect ratio has not been corrected, however, the constraint
lines will not be concurrent (the constraint lines are generated by finding a perpendicular
to the vanishing line L, but perpendicularity is not preserved under changes of aspect
ratio). Starting from an initial aspect ratio which is near the true value, aspect ratio is
iteratively adjusted until the constraint lines are as close as possible to concurrency -
at this stage, the value of aspect ratio is recorded as its true value. The concurrency
test can be carried out given three or more constraint lines.

7 Results

Results are given for two cameras which are part of a stereo system. The cameras are
both of the same type, so principal point and focal length measurements are expected
to be similar, and the aspect ratio is identical. A typical stereo pair of a calibration
plane (dimensions about 4ft-by-4ft) is shown in Figure 8.

The images are 256-by-256 pixels. The first stage of the processing is to remove
radial distortion. The radial distortion correction factor is calibrated separately, by a
method [1] which does not require full knowledge of the camera parameters because
it assumes approximate values for the radial distortion centre and the aspect ratio?.
Canny edge detection to sub-pixel accuracy is run on the images, and straight lines
are fitted by orthogonal regression along the eight horizontal and eight vertical lines
available on the calibration plane. These lines are used to generate 64 vertex positions,

21t is assumed that the centre of the image array is a reasonable approximation to the radial distortion
centre, while a reasonable approximation to the aspect ratio is available from the specification of the
digitisation equipment.
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Figure 8: A stereo pair of the calibration plane. (Bowing of straight lines is just
discernible - this is due to radial distortion).
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Figure 9: Left and right cameras - the constraint lines meeting at the principal point.
The axes are labelled in pixels.

and the vertices are used to determine the projectivity between the image and the
calibration plane by the method in appendix A.

Results are shown for five images for the left and right cameras - the calibration
plane is repositioned for each image so that the constraint lines used to compute the
principal point vary significantly in gradient. Figure 9 shows the five constraint lines
meeting at the principal point, when the aspect ratio has been adjusted to its correct
value. Table 1 shows the focal lengths computed from the five images. Figure 10 shows
the way in which the concurrency of the five constraint lines varies with aspect ratio
- the concurrent point of the constraint lines is measured using orthogonal regression,
and the residual obtained from this process is used as the measure of concurrency.

Table 2 shows a summary of the results. Obtaining a ground-truth to check camera
calibration is difficult - we have so far carried out only one main test. A tape measure
is placed parallel to the image plane at a measured distance in front of the camera (the
parallelism and the measurement can only be approximate). By comparing the ratio
of the tape length to the tape-camera distance, and the ratio of the number of image
pixels spanned by the tape to the focal length, it is possible to compute a value for the
focal length. The result was within 1% of the calibrated focal length. This indicates
that the calibrated value is reasonable, although it can only be treated as a precursor to
more rigorous cross-checking of the calibration.
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Figure 10: Left and right cameras - a plot of the residual from the computation of the
concurrency of lines at the principal point, against aspect ratio. The minimum of the
graph provides the estimate of the actual aspect ratio.

Image number Left camera focal length | Right camera focal length
1 267.7 264.3

2 262.8 266.6

3 261.5 266.6

4 262.6 268.0

5 270.0 266.2

Mean 265 265

Standard deviation 4 1

Table 1: Measurement of focal length in pixels. A focal length of 265 pixels is about
6mm (using the pixel size from the camera specification).

8 Evaluation and Conclusion

As shown in Section 5, the constraint lines which are used to compute the principal
point are reasonably close to concurrency, with an error area of about £2.5 pixels in
the worst case (the left camera). The values of focal length, one from each image,
show only small variation.

The results are for two short focal length wide-angle cameras. We have found that
the method degrades in longer focal length cameras. This is probably because it relies
on perspective effects, and these decrease as the focal length increases.

Finally, regarding the application of the method, note that the processing has no
particular requirement for a symmetrical calibration pattern like the one used - the
minimum requirement on the data is in fact four points in a known configuration on a

Parameter Left camera | Right camera
Principal point | (127,122) 129,124)
Focal length 265 265

Aspect ratio 1.466 1.460

Table 2: Summary of results.
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plane (the actual scale of the configuration is immaterial). This raises the possibility of
extending the method to work in natural scenes - in indoor scenes, for instance, where
the four comers of doorways or windows of known configuration would provide
one way of obtaining the required input data. ' Calibrating from a natural scene is
increasingly desirable with the advent of active cameras which can continually change
focus and zoom - clearly though, there is a huge gulf between obtaining results using
a calibration plane as presented here and the ability to calibrate from a natural scene.
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A. Determining a Projectivity

Figure 11(a) shows the layout of the calibration plane used in the experiments. Figure
11(b) shows the typical appearance of this calibration plane in an image, with distor-
tion due to perspective effects. This appendix describes how to determine a linear
transformation, a projectivity, which maps corresponding features between Figures
11(a) and (b).

When working with projectivities, points and lines are represented in homogeneous
coordinates. Let the vertices of the calibration squares in the image be represented
by (z1,%,1)...(zn, yn, 1) where (z, y) is the image position in pixels and the third
component is set to 1. Let the corresponding vertices in a coordinate frame based on the
calibration plane (hereafter, just the “calibration frame”) be (X1, Y:,1)...(Xn, Yn,1)
where (X, Y') are Euclidian coordinates and the third component is again set to 1.
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Figure 11: (a) A fronto-parallel view of the calibration plane (the plane used in the
actual experiments had 4-by-4 squares). (b) The calibration plane as it appears in a
typical image, with distortion due to perspective.

The choice of origin and axes for the calibration frame is arbitrary, but it is
convenient to align the z— and y—axes with the horizontal and vertical directions of
the calibration squares. Note that there is no requirement here that the calibration
pattern consists of squares.

The projectivity is determined by a method in [5]. Each vertex in the image is
related to its corresponding point in the calibration frame by

X a;; ap ap z;
[Yc]=ks[021 an azsl[ye] (1)

1 3] (32 1 1

where the matrix « is the required projectivity, (z;,y;,1) and (X;,Y:, 1) are
corresponding points in the image and calibration frame respectively, and k; is a scale
factor which varies with each particular pair of points. Eliminating k; from the three
equations present in matrix equation (1) leaves two linear equations. Thus, given four
pairs of points, there are eight linear equations in the eight unknowns a;;...a32, and o
can be found®. Given n points, there are (n * 2) equations in the eight unknowns, and
a method such as the pseudo-inverse can be used to find a solution.

Itis shown in [6] that if o maps points from the image to the calibration frame, then
a~! is guaranteed to exist and maps points from the calibration frame to the image,
a~T (the inverse transpose of ) maps lines from the image to the calibration frame,
and o' maps lines from the calibration frame to the image.

*The condition for linear independence of the equations is that no three of the four points are collinear.



