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Abstract

A new class of oriented, curvature sensitive filters are introduced. These
filters provide a low-level detection facility for noisy curves without a
prior edge extraction stage. The application of these filters to the detection
of Carboniferous Foraminifers (a type of microfossil found in plane rock
sections) is described. A symbolic representation of the detected curves is
stored in a database which is then queried to recover the required
structures. We show that the curves identified by the filter correspond to
salient features of the microfossil evidence in the image.

1 Introduction

We report here on a research project on techniques for content addressing
of image databases. The aim is to provide the equivalent of "free-text"
document retrieval for real image data. This is achieved by extracting some
representation of image content using image analysis and then storing this
information in a database together with the raw image data. The user
interacts with the system to define a query set of interesting images which
can be inspected on-screen.

One important application which is under investigation for this system is
the dating of rock samples using microfossil evidence ( a procedure known
as biostratigraphy). Work has been reported on automatic or
semi-automatic biostratigraphy of 3-D microfossil samples [1] but the
systems described rely on graphical input from the user rather than image
analysis. Here we are looking at a different type of microfossil (the
Carboniferous Foraminifera), which because their hardness is similar to that
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of the surrounding rock can only be viewed as 2-D sections from thin

sections. A reasonably clear example of this type of microfossil is shown

in figure 2 and a less clear example in figure 3. It can be seen that the

actual microfossils can be distinguished by eye from the surrounding rock

because of a pronounced geometrical structure. The level of visual noise is

quite high, and this factor is inherent in the nature of the material, not an

artifact of the imaging technique.

We have looked at the Canny-type edge maps for these images but the

amount of data is huge and very few of the edge segments relate to

significant object features. This has lead us to look towards robust methods

for detecting noisy curves, which are the predominant visual features in this

application.

Low level schemes for curve detection have been reported [2] [3] but

the work seems to have been motivated by physiological considerations

rather than by a need for robust curve detection. We feel that any scheme

which relies on bottom-up grouping of edge information is doomed to

failure on images containing this level of visual noise. Instead we take a

top-down approach and fit a local model of a curved boundary directly to

the grey-level image itself. This is achieved by a process based on linear

filtering of the image data with a specialised filter.

This filter is a variation of that reported in [4] as a method for precise

localisation of curved boundaries, although the actual problem addressed

here is quite different.

In an effort to quantify the performance of these filters we will show,

using actual microfossil images:

(a) In section 3.1, how the detection performance of the operator

varies with og (the filter arc length);

(b) In section 3.2, that the curvature correction (i.e. the Newton step

in K) is self consistent;

(c) In section 3.3, that the curvature of the filter has a strong

influence on which curves are detected and that the curvature selectivity can

be increased by placing a restriction on the size of the Newton step in *;

and

(d) In section 3.4, that a simple Hough-like centre binning algorithm

provides a reliable method for detecting microfossil structures.
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2 Technical Approach

2.1 The Filter

The basic approach is to firstly filter the image with a specialised linear

filter and then to detect local intensity extrema (minima and maxima) in the

filtered image. There are typically about 200 of these local extrema (which

we call "hits") in each image; this is a much more manageable amount of

data than an edge map. The hits are then subject to further selection based

on:

(a) parametric information and

(b) intensity ranking.

The parametric information quantifies the behaviour of the hit as the

filter parameters are varied (this information is obtained from partial

derivatives).

The filters are highly direction sensitive and so the whole process is

repeated for several different orientations.

The filter used for detecting curved edges is illustrated in fig (1). The

filter kernel is generated starting from a simple Gaussian shape which is

elongated and then curved and finally differentiated in the direction

perpendicular to the elongation so as to give an curved edge sensitive

detector. The elongated curved Gaussian G(x,y) is the product of two

terms:

i
((KX-COSS)2 + («y-sin0)2)5 -1

e

and

x2+y3

Here e is the angle of the filter and K is the curvature. The first of

these terms decays (via <ra) with distance from the circle centred on

cos(fl)//c, sin(fl)/ic. The second term decays more gradually (via o^) with

distance from the filter centre. The directional derivative K(x,y) is given

in terms of the derivatives with respect to the spatial directions x and y by

K(x,y) = - { Gx cos0 + Gy sin 9 )
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where the minus signs cause the sense of differentiation to be radially

outwards at the filter origin. This is our filter kernel (see fig 1).

Derivatives of this expression with respect to x,y and K up to second order

were calculated using the symbolic algebra package Macsyma. By the usual

argument [5] the derivatives of the filtered image with respect to these

parameters can be obtained by filtering the image with the differentiated

kernels. The filtered images are computed at every point on the pixel grid

using an FFT convolution routine. At this stage we could detect local

maxima by examining adjacent pixels. However, this is not a wholly reliable

method, marking too few or two many points at places where the image is

changing rapidly. Instead by computing the Newton step (a term from

optimisation theory -see for example [6]) we are able to locate extrema of

the filtered image and get a sub-pixel estimate for the position. The

Newton step in x,y is given by

(ax, ay) = - H - ' (Gx> Gy)

where (Gx,Gy) is the vector of first derivatives (the gradient) and H is

the matrix of second derivatives (the Hessian).

In the output of this filter, local maxima correspond to the edges of

locally convex bright objects, while local minima correspond to the edges of

locally convex dark objects. The Newton step in e and K can also be

calculated and this gives an estimate for the optimum values for e and K.

For « we used the step in (x,y,e) space

xx G x y Gxd 1 ~l

xy °yy ^ye t°x- °y> O 8 '
. Gx0 cy0 C60 J

and similarly for K. It would be possible to compute a four dimensional

Newton step in (x,y, e, K ) space, but previous experience with this sort of

filter has suggested there may be numerical problems doing that.

Obviously this estimate is short-range in that if the filter parameters

are such that the filter is poorly matched to the visual object sought then

the Newton estimate is unreliable.

Tests on phantom images of curved objects have been carried out and

these experiments show the expected results and are not reported here.

The key issue is the performance of the operators described when applied
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to noisy image data. This issue has been addressed by the experiments

reported in section 3.

2.2 The Database

The database infrastructure for this project is a simple prototype triple

store, along the lines of the Essex Sierra IFS simulator [7], with each triple

representing a relationship between two entities. Lexical items are either

encoded directly into the identifiers (eg integers, floats) or stored separately

(strings). Unlike a relational database where the access programs need to

know the names of tables and fields in the database in order to access the

data, in the triple store the lowest level of storage is more uniform (a

triple of indentifiers) and doesn't change when new relationships are

introduced. The relational model prejudges (to some extent) the queries to

be made (and in compensation offers efficient access), whereas the triple

store allows the database schema to be represented in the database itself, so

that it can easily evolve.

For the fossil database data items were computed and stored as follows:

for a given orientation and curvature the filter output was computed, along

with first and second derivatives with respect to position, angle and filter

curvature. From these extrema of the filter output were computed together

with estimations for the true values of the curvature and orientation of the

curved edge.

Experiments can now be expressed as computations on the result of

queries to the database: eg "what is the mean position of hits which have

their centres within a given distance of a given point?". At present these

queries are embedded in programs, but the plan is to implement them in a

special-purpose language.

3 Experimental Results

An example of the 5 strongest hits from a single oriented filter is shown in

figure 4. The curves are marked over a range ± 2o$ and follow the centre

line of the filter. In figure 5 we show the two strongest hits from each of

20 directions for the image in figure 2.
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3.1 Choice of parameters

The best choice of aa and ap for a given domain depends on the noise in
the image [8] which in this application precludes the use of very small
values. The upper limit on aa is dictated by the proximity of clutter. The
filter arc length parameter <JQ is more model-dependent: for example in
most cases we are interested in longer curves of low curvature and shorter
curves of high curvature, so <TQ should be chosen longer or shorter to
match. Apart from this the expected amount of deviation from circularity
will also influence og. Table (1) shows the variation in the number of hits
on the spiral fossil of image (fig 1) as a$ is varied - in this case the best
value is about 30 pixels. The next two tables (2,3) show the results for
two rather more circular spiral fossil images extracted from published
photographs. <ra was kept constant at 4.4 pixels, which is about half the
thickness of the fossil walls, and so avoids interference between hits arising
from the inside and from the outside walls of the fossil.

Fossil 1 2 - Fossil 2

11
22
29
45

hits on
fossil

16
20
22
20

% total
hits

8
10
11
10

11
22
29
45

hits on
fossil

13
18
17
21

% total
hits

11
13
13.5
15

Fossil 3

11
22
29
45

hits on
fossil

10
14
15
15

W total
hits

5
7
7.5
7.5

3.2 Curvature correction

To get a feel for the extent to which we can "predict the curvature of an
edge from the Newton step in curvature we give three examples of points
where filters of different radius have hits. (These points were chosen at
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random from the spiral image fig 1). The best matching filters (the
consensus of the estimated radii) are marked * in tables 4 to 6 below.

Table 4 - point 1 Table 5 - point 2

filter
radius

40
50
60
70
80
90

estimated radius
of curve

55.23
47.62*
47.09*
44.28
3.39
89.35

filter
radius

40
50
60
70
80
90

estimated radius
of curve

30.71
-131.12
1050.50
109.33
85.19*
84.97*

Table 6 - point 3

filter
radius

40
50
60
70
80
90

estimated radius
of curve

24.42
71.1
60.3
58.7*
51.2*
26.8

3.3 Curvature Selectivity

To show curvature selectivity, six filters with a radius ranging from 40 to
90 pixels were applied to the image in fig 2. The twenty strongest hits
from each of twenty directions were taken. If the spiral were perfectly
smooth then as we travel out from the centre along the curve of the spiral
we would expect to encounter hits from filters of a given radius only in
one section of the spiral.

In practice with the fossil shown (fig 1) the curvature is quite irregular,
but a relatively uncluttered part of the spiral occurs at a distance of 50 to
70 pixels from the fossil centre and plotting the density of hits in this area
against filter radius reveals a peak at a filter radius of 60 to 70 pixels,
shown as the upper line in figure 6.

This shows that the geometrical form of the filter introduces a
selectivity or bias towards specific curvatures in the image.

The curvature selectivity of the filter may be increased by insisting that
the detected curves should "match" the filter in the sense that the Newton
step should be less than some given threshold. The lower trace of figure 6
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shows the result of discarding hits whose Newton step in curvature is

greater than 0.01 pixel~l. In principle the lower the threshold the greater

the selectivity although in practice the effect of very small thresholds is to

eliminate almost all the hits.

3.4 Microfossil detection

To show the usefulness of the hit evidence from these microfossil images

we used a simple binning method for the centres of curvature of the hits

on spiral fossil images. In a perfect spiral such centres would lie on a tight

curve near the centre of the fossil. Thus dividing the image up into square

bins and counting the number of centres in each bin should yield peaks

centred on spiral fossils. To test this a series of 14 images containing spiral

fossils and 4 images with no fossils were taken and the strongest ten hits

from each of twenty angles was computed. For various possible bin sizes

the highest occupancy bin was found, and the density of hits (per square

pixel) recorded. For very large bin sizes this will tend to a constant value,

the average density, while for very small sizes it will be inversely

proportional to the bin area (with the bin holding just one hit). However,

in between we expect images with spiral fossils to have higher densities,

and this effect can be seen if fig 7 where the average density is plotted

against the bin width for the fossil bearing and non-fossil bearing images.

We can use this effect to detect microfossil evidence simply on the basis of

a fixed bin count threshold.

5 Conclusions

The methods employed yield reliable cues for locating spiral microfossil

structures in plane rock samples. The curve finding algorithm described

here provides a rich source of visual evidence from quite noisy images. The

ability of the algorithm to output points rather than curves is a marked

advantage in our database application since this simplifies the construction of

visual models/queries. We hope that the set of points resulting from a well

directed query will be useful for characterisation of microfossils as well as

detection. The operator has several novel aspects, in particular the exclusive

processing of local extrema and the use of partial derivatives for parametric

estimation. Much work remains to be done on how this new type of feature

evidence can be used effectively.



405

We have found that a symbolic representation for the curve evidence
gives us the ability to experiment quickly by simply changing a database
query without re-coding a program. Using this tool we have been able to
explore the area of visual querying in one application.
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Figure 1 FILTER KERNEL
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Figure 2 SPIRAL FOSSIL Figure 3 NOISIER FOSSIL

Figure 4 HITS FROM ONE DIRECTION Figure 5 HITS FROM SEVERAL
DIRECTIONS



408

c

90 100

FILTER RADIUS (PIXELS)

Figure 6 EFFECT OF FILTER CURVATURE

in
c
u

0 25 SO 75 1 0 1 Hi 150 US 200

WIDTH OF BIN

Figure 7 MICROFOSSIL DETECTION PERFORMANCE


