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Abstract

The paper describes a 3-layered architecture for the control of the stereo-
scopic eye-saccade system of a stereo-camera head 1 mounted on an au-
tonomous vehicle.

The 0-level is a proportional feedback controller providing a micro-
saccadic 2 control for eye movements enabling the head to foveate and
track targets but requiring iteration through the vision system with the
attendant computational overhead.

The 1-level provides the feedforward inverse kinematics for saccadic
eye movements allowing a ballistic movement to replace the 0-level control
loop. The training data is provided by the feedback error signal from the
0-level controller.

The 2-level is an adaptive lattice filter which is used to track moving
targets. The filter is 'trained' using vision error-feedback from previous
saccades. The filter learns to predict the future target position in the
next image. This is used by the inverse kinematics module to generate
the eye movement commands for the appropriate predictive saccade.

1 The stereo camera rig used for this work comprises a 3-link kinematic chain, whose degrees
of freedom are rotations around the following axes: i) Pan: a vertical axis corresponding to
the 'neck'; ii) Tilt: an axis at right angles to the neck; and iii) Verge: each camera ('eye')
can rotate independently around an axis at right angles to the tilt axis. The rig has been
constructed so that the centres of rotation of the tilt and pan links coincide, and the centres
of rotation of left and right verge and the tilt links coincide. The length of the tilt link is
approximately 12.5 cm for each eye (i.e. the head is about 25 cm wide); the length of the
verge link (i.e. approximately how far the centre of rotation is from the focal centre of the
camera) is 5cm so that tilting the eye also produces a small translation. It is also of note
that the right camera has been mounted with a 5 degree heterophoria and about 2.5 degrees
of cyclotorsion. Stepper motors control the head and give a maximum saccade velocity of 50
degrees/second.

2Microsaccades are generally used to refer to the very small saccades which, if they have
any function at all, may be used to correct errors arising from drift during fixation of a
stationary target (Carpenter, 1988). We use the term microsaccadic tracking to describe a
form of tracking which uses small vergence saccades (ranging in size from a few minutes of arc
to two degrees), characterised by a fast movement stage, followed by a 80ms image capture
stage during which the eyes remain stationary. In humans, this form of tracking may not
normally occur in isolation but seems to be an important component of pursuit movements
(Carpenter, 1988, page 55).
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1 Introduction
We describe the implementation of a 3-layered architecture for the control of
the stereoscopic eye-saccade system of a stereo-camera head mounted on an
autonomous vehicle. This system is shown in figure 1 as a functional block
diagram and has been implemented on a 4x4 transputer network (see legend
for details).

0-level: This layer is a proportional feedback controller providing a mi-
crosaccadic control for eye movements enabling the head to foveate and track
targets but requiring iteration through the vision system with the attendant
heavy image processing overhead. The latter processing in the current imple-
mentation is a simple centre-of-gravity blob tracker. This rather crude level of
image processing is driven by the real-time demands of the task and current
equipment constraints. The image capture has three modes:

1. Tracking: a 3.75 degree square 'foveal' region of interest (64 x 64 pixels)
is used when a target has been located and is being tracked. It may be
of interest to note that the location of a small target in this fovea takes
at least 20 ms (and more depending on the size of the blob).

2. Recovery: a 7.5 degree square region of interest (ROI) is used to recover
when the target is temporally lost when tracking.

3. Initialisation: the full 30 degree square image for initialisation of target
tracking.

In the tracking mode, image processing is done concurrently and inde-
pendently in the two images; in the recovery and initialisation modes a sub-
sampling strategy is used to locate a target in one image and then focus the
search around the corresponding point in the other image.

The details of the implementation are unimportant but a principle may be
worth elaborating. A tracking competence working on primitive, fast and even
crude vision processing can provide the 'temporal glue' by which "the thing
you saw then is the object you recognise now". Thus during tracking the foveal
ROI is distributed as a continuous stream to another image processing system,
completely independent of the tracking system, which samples the image stream
at a very different and much slower rate. Currently this system is used only to
display the images, but the direction of future system evolution is obvious.

1-levei. This layer provides the feedforward inverse kinematics for saccadic
eye movements allowing a ballistic movement to replace the 0-level control loop.
Only a brief description of this level is given because the work has been de-
scribed elsewhere (Dean et al 1991; Mayhew et al, 1992). They used adaptive
PILUTs (Parameterised Interpolating Look-Up Tables) as the architecture to
learn the state dependent correction to the 0-level controller. Following Kawato
et al (1989) the feedback error signal from the 0-level simple proportional con-
troller was used to provide the training data.

2-levei. This is an adaptive lattice filter which is used to track moving
targets. The filter is trained using error feedback from previous saccades within
the current tracking sequence, so that the filter learns to predict the future
target position in the next image. This is used by the inverse kinematics module
to generate the eye movement commands for the appropriate predictive saccade.
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For the 2-level layer we wished to develop a tracking prediction module with
the following properties: i) it should be as general as possible, making minimal
assumptions about the complexity and stationarity of the target trajectory; ii)
it should adapt in very few time steps or samples, both to the onset of motion
and to any discontinuities in the trajectory, yet at the same time it should be
robust over sequences of missing data such as frequently result from occlusions
and low level image processing infelicities; and iii) the implementation of the
predictor should be computationally inexpensive. We describe below the details
of the experimental evaluation of this module, using both simulated data, and
to control the real stereo while tracking a moving light source.

2 Lattice Predictor

The use of multi-stage lattice filters (Goodwin and Sin, 1984; Alexander, 1986)
for prediction is commonplace especially in the speech processing domain (Mak-
oul,1975). The general principle underlying their design is that the successive
stages of the filter compute the partial correlations (or regressions) at differ-
ent delays. We have explored several different adaptive algorithms for doing
this. As expected, we found gradient methods of training inefficient compared
to recursive data projection algorithms. However, an alternative method has
been implemented that calculates the reflection coefficients of the lattice filter
directly using a decaying running average of the smoothed partial correlations.
By controlling the time constant of the estimator of the partial correlations,
both the requirements of fast adaptive response and relative robustness to miss-
ing data can be satisfied. Because successive stages of the filter are orthogonal
and independent it is easily adapted on-line to the complexity of the signal by
the simple expedient of adding or deleting stages of the lattice in response to
variations in the partial correlations of the last stage. (See figure 2. For further
experimental details see Zheng, et al 1991).

In implementing the adaptive lattice predictor in a simulation environment,
we have found that the choice of initial conditions can significantly influence the
rate of convergence of the reflection coefficients. If the reflection coefficients are
initialised to zero this has the effect of introducing an artificial discontinuity
in the input data which would propagate through the stages of the lattice
predictor influencing the calculations of all reflection coefficients, resulting in
delayed convergence and poor predictive performance.

We noticed that the first stage of a lattice predictor is very similar to a
differentiator. Thus an appropriate initial condition for the reflection coefficient
of the first stage should be -1. When so initialised a very significant increase in
the rate of convergence of all the reflection coefficients is obtained with a much
improved predictive performance.

This is of particular importance when the trajectory to be modeled contains
discontinuities such as a sudden step change in velocity and/or change in direc-
tion. These occurrences can be readily recognised by monitoring the prediction
error. Unless dealt with appropriately these discontinuities corrupt the future
tracking behaviour. The strategy we have adopted is to maintain a running
estimate of the standard deviation of prediction errors assuming they were nor-
mally distributed. If the current prediction error exceeds the 95% confidence
limit, the memory is immediately flushed and all the stages of the lattice are
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reinitialised. The strategy is effective only because of the rapid convergence
obtainable when correctly initialised.

We have compared the performance of a two-stage lattice filter, a Kalman
filter of the same order, and a non-predictive tracker. The performance of the
predictor is significantly better than the Kalman filter. This is because the
lattice filter is optimal in the least squares sense and, unlike the Kalman filter,
incorporates no assumptions about the structure of the trajectory. Another
attractive feature of the lattice filter is that, because successive stages are or-
thogonal, it is very simple to adapt its length on-line as the complexity of the
target trajectory increases or decreases. This can be done by monitoring the
residuals. The Kalman filter does not have this degree of flexibility.

3 Online Saccadic Tracking

We have evaluated the lattice predictor in several modes:

1. Relative mode: visual target prediction using fixation error feedback. The
filter was used to generate predictions of the future retinal coordinates
of the target with respect to the fovea. The prediction was then used
(via the kinematics) to move the head to a position which nulled off the
predicted retinal error. The predictor has no access to the actual target
trajectory but must estimate it in the context of its own saccades and the
measured retinal errors. Four independent filters are used, one to track
each of the retinal coordinates of the target in the left and right images.

2. Absolute mode: motor state prediction using fixation error feedback. The
filter was used to generate predictions of the future motor states which
would foveate the target. The predictor has access to the absolute motor
states at which the image was taken, and the error measured in retinal
coordinates is converted via the inverse kinematics to motor commands.
Three filters are required: one for each of the verge motors and the other
to control the tilt.

3. Image capture modes: serial and pipeline. The above tracking task can
be broken into the following four stages: a) image capture; b) image
processing; c) prediction and inverse kinematics; and d) head motion.

Pipelining is a form of parallelism which is appropriate when a repetitive
activity consists of a sequence of stages. The strategy is to overlap the pro-
cessing of the stages so that while stage n is being processed, stages n-1 and
n-2 etc of successive instances of the action are processed concurrently. Fig-
ure 3 shows how it is possible to pipeline the components of the microsaccadic
tracking task.

The advantage of pipelining is clear: it increases through-put of a processing
stream. Here, the important difference from serial processing is that in pipeline
mode the target-locked image sampling frequency is maximised. Furthermore,
while maintaining the same sampling frequency or image capture rate, it is
possible to treble the amount of time available for the image processing and
inverse kinematic stages. Also, because the number of head motion stages has
doubled, the maximum target velocity can be increased proportionately. From
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this it follows that a pipeline tracker is much less vulnerable to temporal noise
than a tracker operating in serial mode. There is some potential for oscillation
because the sequence involves a two-step lag but this danger is reduced by
using the lattice filter to generate 2-step ahead predictions. This stabilises the
system and reduces the tracking errors. Figure 4 shows the effect of using the
filter to model the trajectory and the advantages over a simple non-predictive
pipelined tracker in terms of the off-fovea retinal error.

4 Conclusions
This study has shown several attractive features of the lattice predictor as a
component of an architecture for microsaccadic tracking, i) The order of the
lattice predictor can be changed by simply adding on or taking off stages, mak-
ing it easy to adapt to changes in the complexity of the input signal process,
ii) The lattice predictor is capable of providing robust several-step-ahead pre-
dictions. These may be used to bridge sequences of missing data and the gap
produced by sensor action delays, iii) It is robust to discontinuities in the target
trajectory, iv) The lattice filter implementation is extremely economical and
computationally efficient, v) It plays an important stabilising role in pipelining.

Pipelining and the resulting maintenance of the maximum image sampling
frequency is potentially important, perhaps less for its effects on the tracking
performance per se, but because a pipelined tracker can support other con-
currently operating vision processes which themselves require high sampling
frequencies with limited temporal noise (eg modelling object deformations as
a time series, or building a model of the target trajectory in world geometry
coordinates in order to evaluate the risk of collision). That the tracking compe-
tence can be subsumed by other vision processes is an important consideration
for the long term development and evolution of the system.
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LAYERED ARCHITECTURE FOR SACCADE
CONTROL

VISION
DELAY
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Figure 1. The philosophy of subsumption applied to a perceptual-motor task:
three layers of competences for a microsaccadic tracking system able to main-
tain zero fixation error. Level-0 is the basic competence, a proportional feed-
back controller providing a stable starting point that is enhanced by the ad-
dition of two further layers of visuo-motor competence. Level-1 subsumes the
Level-0 competence, and improves it to provide a single saccade to achieve fixa-
tion of a stationary target. Level-2 subsumes both the lower level competences
and augments them by providing zero fixation under conditions when the target
is moving. See text for details.
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LATTICE FILTER

INPUT Residue

Figure 2. The lattice filter implementation of a transversal filter. The filter uses
the current and past observations to form a prediction of the future output.
It makes no assumption about the signal being linear and finite dimensional,
it simply uses an auto-regressive model for the structure of the filter (which
may not be optimal) and chooses the coefficients to minimise the mean square
prediction error. A'i, K2 etc are the reflection or partial correlation coefficients
computed between the top and bottom 'delay' lines. (A'I is generally nega-
tive, and initialised to -1 to give rapid convergence). Z~l is a delay operator.
Successive stages are delayed by increments of the sampling interval. The one-
step-ahead prediction is given by summing the negated reflection coefficients
Ku K2...Kn.
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Hz. = 6.25
LAG = 160ms.
A X_ = 32 pixels = half a fovea

Hz. = 6.25
LAG = 320ms.
A X_ = 64pixels = 400 pix/second

Figure 3. Serial and pipeline modes for micro saccadic tracking. Time is
shown left-to-right quantised into 12 chunks, each of 40ms (set by the image
frame grabbing rate). The vertical axis depicts the image capture (GRAB),
image processing (VISION) and head movement (MOVE) stages. For clarity
of exposition, it is assumed that the target velocity is constant and, at the
maximum consonant with the time allotted to the head movement stage, is
sufficient to maintain tracking without 'slipping' a frame. To minimise blur,
the image capture stage is triggered by completion of the head movement stage.
In the upper half of the figure (serial mode), the thick line shows which stage
is in operation at any given time. In the lower half (pipeline mode), the thick
line and the dotted line show the simultaneous operation of different stages.

a) Serial mode: The maximum sampling rate is 6.25 Hz, the samples have a
160 ms lag, and at a maximum head velocity of 50 degrees a second the retinal
target velocity is 200 pixels a second. This is equivalent to a displacement
across the image of half the 'foveal ROF per sample. The critical feature is
that to maintain this rate the demand on visual processing stage is maintained
at 40 ms. This provides serious constraints on both the size of the region that
can be processed and the complexity of the algorithms that can be used to
support the tracking.

b) Pipeline mode: The sampling rate is maintained at 6.25 Hz. The samples
lag by 320 ms, and the maximum allowed average velocity is 400 pixels a
second. The feature is that if the lag does not cause instability (a function of
the complexity of the target trajectory), the pipelining mode increases the time
allowed for image processing by a factor of four. This provides an important
buffer for maintaining the temporal stability of the tracking sample frequency.
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Fixation Error? Comparison With and Without Predictor
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Figure 4. The improvement in microsaccadic tracking performance provided
by a 4-stage, 2-step-ahead lattice predictor (absolute mode using vision error
feedback) compared with a non-predictive tracker, both running in pipelining
mode. The target was a small light source moved by a robot arm over the
ground plane in front of the vehicle, (a) Fixation errors (represented as left
verge motor counts), (b) Normalised cumulative frequency distribution of the
fixation errors. The important point to be noted is the rapidity with which the
errors of the predictive tracker quickly return to near-zero after major error
excursions caused by a sudden change in the direction of target trajectory. The
predictor rapidly learns the trajectory, the non-predictive tracker is one step
behind. The difference between the two modes is statistically very marked as
can be seen from (b). The rms errors are: predictor 4.16, non-predictive tracker
6.84. Each motor count corresponds to about 7.7 min visual arc so the residual
tracking errors of the predictor are very small and roughly of the same order
as human vision (Carpenter, 1988, p.125).


