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Abstract

A maximum likelihood stereo algorithm is presented that avoids the
need for smoothing based on disparity gradients, provided that the
common uniqueness and monotonic ordering constraints are applied. A
dynamic programming algorithm allows matching of the two epipolar
lines of length N and M respectively in O(NM) time and in O(N)
time if a disparity limit is set. The stereo algorithm is independent
of the matching primitives. A high percentage of correct matches and
little smearing of depth discontinuities is obtained based on matching
individual pixel intensities. Because feature extraction and windowing
are unnecessary, a very fast implementation is possible.

Experiments reveal that multiple global minima can exist. The
dynamic programming algorithm is guaranteed to find one, but not
necessarily the same one for each epipolar scanline. Consequently, there
may be small local differences between neighboring scanlines.

1 Introduction

Stereo algorithms seek to find corresponding features between a pair of images.
Stereo algorithms can be characterized by (1) the primitive features that are
matched, (2) the local cost of matching two features and (3) the global cost
function and associated constraints. The stereo framework presented here is,
at the algorithmic level, independent of the feature primitives. However, for
the experimental results of Section (3), matching was performed directly on the
scalar intensity values of the individual pixels. Matching occurs along epipo-
lar lines which are assumed, for convenience, to be coplanar with the image
scanlines. The epipolar constraint reduces the stereo correspondence problem
from two to one dimension. Most, if not all, previous stereo algorithms include
a cost based on the disparity gradient [1, 2, 4, 5, 11], i.e., the difference in
depth between two pixels divided by their distance apart. This cost can be
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thought of as a regularization factor [10] which serves to constrain surfaces to
be smooth. However, surfaces are not smooth at depth discontinuities which
are the most important features of depth maps. One contribution of this paper
is to show that penalizing disparity gradients is unnecessary, provided that the
common assumptions of uniqueness and monotonic ordering are made. This is
detailed in Section (2), in which stereo is formulated as a Bayesian sensor fusion
problem. A local cost function is derived that does not penalize disparity gra-
dients. Section (2.1) then describes how a global minima can be found using a
dynamic programming algorithm that enforces the uniqueness and monotonic-
ity constraints. The experiments described in Section (3) reveal that multiple
global minimum may exist. This can give rise to (minor) artifacts in the dispar-
ity map. Similar multiple global minima may exist for other stereo algorithms.
Results for several natural scenes are included. Finally, Section (4) concludes
with a discussion of the advantages and disadvantages of this algorithm and

possible future work.

2 Deriving Cost Functions

In this section, the cost of matching two features, or declaring a feature oc-
cluded is first derived, then a global cost function that must be minimized is
derived. To begin, we introduce some terminology as developed by Pattipati
et al [9]. Let the two cameras be denoted by s = {1,2} and let Z, represent
the set of measurements obtained by each camera along corresponding epipolar
lines: Z, = {Z-’,i.};’:'—_-a where m; is the number of measurements from cam-
era s and z, g is a dummy measurement, the matching to which indicates no
corresponding point. For epipolar alignment of the scanlines, Z, is the set of
measurements along a scanline of camera s. The measurements z, ;, might be
simple scalar intensity values or higher level features. Each measurement z, ;,
1s assumed to be corrupted 'by additive, white noise.

The condition that measurement z; ;, from camera 1, and measurement
%y i, from camera 2 originate from the same location, z, in space, i.e. that
214, and zp;, correspond to each other is denoted by Z; ;,. The condition
in which measurement z, ;, from camera 1 has no corresponding measurement
in camera 2 is denoted by Zj, o and similarly for measurements in camera 2.

Thus, Z;, o denotes occlusion of feature z; ;, in camera 2.
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Next, we need to calculate the local cost of matching two points z; ;, and
2o ;,. The likelihood that the measurement pair 7;, ;, originated from the same
point zj is denoted by A(Z;, i, | xx) and 1s given by
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where é;, is an indicator variable that is unity if a measurement is not assigned a
corresponding point, 1.e. is occluded, and zero otherwise. The term p(z | z) is a
probability density distribution that represents the likelihood of measurement
z assuming it originated from a point z in the scene. The parameter Pp,
represents the probability of detecting a measurement originating from z; at
sensor s. This parameter is a function of the number of occlusions, noise etc.
Conversely, (1 — Pp) may be viewed as the probability of occlusion. If it is
assumed that the measurements vectors z, ;, are normally distributed about

their ideal value z, then
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where d is the dimension of the measurement vectors z,;, and S, is the co-
variance martix associated with the error (z —z, ;,). Since the true value, z, is
unknown we approximate it by maximum likelihood estimate z obtained from

the measurement pair Z;, ;, and given by
2z~ 2= S2;,(S1,i, +S2) 214, + S1,4,(S1,i, + S2,i,) 22,4, (3)

where S, ;, is the covariance associated with measurement z, ;, .

Now that we have established the cost of the individual pairings Z;, ;,, it is
necessary to determine the total cost of all pairs. Denote by 7 a feasible pairing
of all measurements and let I' be the set of all feasible partitions, i.e. I' = {v}.
If 7o denotes the case where all measurements are unmatched, i.e., the case in
which there are no corresponding points in the left and right images, then we
wish to find the pairings or partition y that maximizes L(7)/L(7o) where the
likelihood L(7) of a partition is defined as
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where ¢, is the field of view of camera s and n, is the number of unmatched
measurements from camera s in partition 7. The likelihood of no matches,
L(vo) is therefore given by L(y0) = 1/(¢}'¢5?

The maximization of L(y)/L(7y0) 1s eqivalent to
min J(7) = min[In(L(30)) — In(L(7))] (5)

which leads to
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The first term in the inner summation of Equation (6} is the cost of matching

two features while the second term is the cost of an occlusion/disparity discon-
tinuity. Clearly, as the probability of occlusion (1 — Pp,) becomes small the

cost of not matching a feature increases, as expected.

2.1 Dynamic Programming Solution

The minimization of Equation (6) 1s a classical weighted matching or assign-
ment problem [8]. There exist well known algorithms for solving this with
polynomial complexity O(N3) [7]. If the assignment problem is applied to the
stereo matching problem directly, non-physical solutions are obtained. This 1s
because Equation (6) does not constrain a match at z;, to be close to the match
for z(;_1),, yet surfaces are usually smooth, except at depth discontinuities. In
order to impose this smoothness condition, previous researchers have included
a disparity gradient term to their cost function [1, 4, 5, 11, 12]. The problem
with this approach is that it tends to blur the depth discontinuities as well as
introduce additional free parameters that must be adjusted.

Instead, we assume as in [6] (1) uniqueness, i.e. a feature in the left image
can match to no more than one feature in the right image and vice versa
and (2) monotonic ordering, i.e. if z;, is matched to z;, then the subsequent
measurement z;,y; may only match measurements z;,4; for which j > 0. The
minimization of Equation (6) subject to these constraints can be solved by
dynamic programming. If there are N and M measurements in each of the two

epipolar scanlines, respectively, then Ohta and Kanade [6] presented a solution
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with complexity Q(N?M?). We have improved this minimization procedure to
O(NM):

2 _ Pp 1
Occl = i
cclusion [!n (1_PD‘ 12718713 )]
for (i=1;i< N;i++){ C(i,0) = i*Occlusion }

for (i=1;i< M;i++) { €(0,i) = i*Occlusion}
for(i=1;i< N;i++){
for(j=1;3< M;j++){

€(i,j) = min (C(i-1,j-1)+c(zy,i,25;), C(i,j-1)+0cclusion,
C(i-1,j)+0cclusion) } }

where C/(1,7) represents the cost of matching the first ¢ features in the left
image with the first j features in the right image and c(z i, 22 ;) is the cost of
matching the two features 2, ;,22; as shown in Equation (6).

Of course, this general solution can be further improved by realizing that
there is a practical limit to the disparity between two measurements. This is
also true for human stereo, the region of allowable disparity being referred to
as Panum’s fusional area [3]. If a measurement z;, is constrained to match only
measurements z;, for which 7y — Az < 45 < i; + Axr then the time required by

dynamic programiming algorithm can be reduced to linear complexity O(N).

3 Experimental Results

Unless otherwise stated, all experiments described here were performed with
scalar measurement vectors representing the intensity values of the individual
pixels, i.e. z;, = I;,. The field of view of each camera, ¢,. is assumed to
be m and the measurements are assumed to be corrupted with white noise of
variance o2 = 16. Finally, the probability of detection Pp, is assumed to be

0.9 so that the cost of an occlusion is 3.8.

3.1 Random Dot Stereograms

Figure (1) shows the depth map obtained from the left image of a “wedding
cake” random dot stereogram - three rectangular regions one above the other.
Note that black pixel values indicate no match with pixels in the right image.

While the number of correct matches is 95.4%, it is interesting to examine why
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the correct depth estimates have not been found at every point on every line. In
particular, since the RDS pair is noise free, a perfect match is expected, so the
right side of each rectangle should exhibit a depth discontinuity that is aligned
with neighboring scanlines. This is not the case in practice. Close examination
of this phenomenon revealed there are multiple global minima! Dynamic pro-
gramming is guaranteed to find a global minima but not necessarily the same
one for each scanline. Hence, the misalignment of the vertical depth disconti-
nuities. This is a problem. Note however, that the jagged vertical discontinuity
caused by the multiple global minima is a characteristic of other stereo algo-
rithms (2, 6] and may be indicative of the presence of multiple global minima
in other stereo algorithms.

Rather than choose an arbitrary solution from amongst the set of global
minimum, a second optimization can be performed that selects from the set
of solutions, that solution which contains the least number of discontinuities.
Performing this minimization after first finding all maximum likelihood solu-
tions is very different from incorporating the discontinuity penalty into the
original cost. The second level of minimization can be easily accomplished as
part of the dynamic programming algorithm without having to enumerate all
maximum likelihood solutions.. The result of applying the maximum likelihood
minimum discontinuity algorithm to the random dot stereogram is shown in
Figure (2). A significant improvement is evident, with the percentage of correct
matches increasing to 98.7%. Once again, multiple global minima are evident
but their number is far fewer.

Note that using the dynamic programming algorithm with a disparity limit
of 26 pixels a 2566x256 pixel image pixel scanline takes approximately 11 seconds
on a SGI Personal Iris. Each scanline therefore takes 0.04 seconds which is very
close to video rates of 0.033 seconds per frame, if all scanlines are processed in

parallel.

3.2 Natural Scenes

Figure (3) is the left image of the “Pentagon” stereogram. Figures (4) and
(5) shows the resulting disparity maps for the maximum likelihood (ML) and
ML with minimum discontinuities (MLMD) algorithms. The MLMD provides

a qualitative improvement. Note that for display purposes, those pixels that
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were not matched are assigned the disparity value of whichever of the left or
right neighoring pixel is furthest awayv. Once again, vertical depth disconti-
nuities exhibit some misalignment between scanlines. Nevertheless, significant
detail is obtained, as is evident from the overpasses and freeways in the upper
right corner of the image. Figure (6) shows the result of applying the MLMD
algorithm for Pp = 0.99 and supports our observation that the algorithm is
stable for reasonable variations in the free parameter value.

Figures (8) and (9) show the results of applying the ML and MLMD algo-
rithm to a stereo pair, the left image of which is shown in Figure (7). Especially
noteworthy is the narrow sign pole in the middle right of the image which il-
lustrates the sharp depth detail that is extracted.

The algorithm was tested on other stereograms and similar performance

was obtained. However page restrictions, prevent further examples.

4 Conclusion

Determining the correspondence between two stereo images was formulated as
a Bayesian sensor fusion problem. A local cost function was derived that con-
sists of (1) a normalized squared error term that represents the cost of matching
two features and (2) a fixed penalty for an unmatched measurement that is a
function of the probability of occlusion. These two terms are common to other
stereo algorithms, but the additional smoothing term based on disparity gra-
dients is avoided. Instead, uniqueness and monotonicity constraints, imposed
via a dynamic programming algorithm constrain the solution to be physically
sensible.

The dynamic programming algorithm has complexity O(N M) which re-
duces to O(N) if a disparity limit is set. The algorithm is potentially very fast.
especially since a high percentage of correct matches were obtained on intensity
based matching primitives that require no feature extraction.

Experimental results were presented for RDS and natural images with good
results. The random dot stereograms revealed that multiple global minima may
exist. Consequently, there may be small local differences between neighboring
scanlines. Similar differences are visible for other stereo algorithms which may
indicate that multiple global minima are a problem for these algorithins as

well. A more detailed study of this phenomenon is needed. In particular, does
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a sensible cost function with only a single global minima exist?

The experimental results described here do not use any information between
scanlines. This is somewhat surprising, but was a concious decision to avoid
blurring horizontal depth discontinuities. The maximum likelihood minimum
horizontal discontinuities (MLMD) also suffers from multple global minima,
though far fewer than the maximum likelihood algorithm alone. A third level
of optimization should be investigated that maximizes the continuity between

scanlines. This is being examined.
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Fig 1: Maximum likelihood disparity Fig 2: Maximum likelihood minimum
map for random dot stereogram with discontinuity disparity map for rds.
P,=09.

Fig 4: Maximum likelihood disparity
Fig 3: The Pentagon map for the Pentagon for P, = 0.9.
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Fig 5: Maximum likelihood minimum Fig 6: Maximum likelthood minimum
discontinuity disparity map for the discontinuity disparity map for the
Pentagon for P, = 0.9. Pentagon for P, = 0.99.

Fig 7: Lef image of the "parked Fig 8: Maximum likelihood disparity
car” stereo pair. map for the "Parked car"”.

Fig 9: Maximum likelihood minimum
discontinuity disparity map for the
"parked Car”.




