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Abstract

An approach to solving the stereo correspondence problem in trinocular
stereo vision is described. It is based on geometric matching constraints
relating the orientation of lines extracted in three images taken from
different viewpoints. These novel constraints are termed unary orienta-
tion and binary orientation constraints. Matching is achieved within an
optimisation framework in which the constraints are encoded into a cost
function that is optimised using the simulated annealing method. Results
are demonstrated and the characteristics of the approach are explored on
both synthetic and real1 trinocular images.

1 Introduction

A fundamental problem in computer vision is the inference of 3D structure from
2D images. An important machine vision technique for this is stereo vision. In
stereo vision several images of a scene are taken from different viewpoints and
an attempt is made to find the correct correspondence of image features that are
projections of the same physical entity. If the geometric relationship between
viewpoints is well known then accurate 3D structure can be recovered using the
measured image disparity (or shift) between matched features. The problem
addressed in this paper is that of finding the correct feature correspondences
in a set of three stereo images.

Previous work in stereo vision has involved matching of point or line features.
Line matching schemes in binocular and trinocular vision [1, 2, 3, 6, 7, 8] have
been primarily based both on similarity of feature attributes and on using point-
based representations of lines (midpoints or endpoints) that allow adoption of
epipolar constraints developed for point based stereo matching. Unfortunately,
matching based on similarity of features is limited to cases where the angle
between views is small, while point-based matching is not robust as occlusion
effects or line fragmentation artifacts mean that midpoints or endpoints may
not correspond to the same 3D point in a scene.

In this paper we attempt to exploit fully the geometric constraint informa-
tion inherent in lines among three views. We suggest more direct geometric
constraints based on the relationship between the orientation of lines in three
distinct images. Two main results are exploited: the first uses the orientation

'The real trinocular data was kindly supplied by Dr N. Ayache of INRIA, Rocquenfort,
France and is the data used in his recent book "Artificial Vision for Mobile Robots: stereo
vision and multisensory perception"
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Figure 1: Overview of the Algorithm

of lines in three images and is called the unary orientation constraint while the
second constraint relates pairs of lines matched in three images and is called
the binary orientation constraint. These constraints are viewpoint independent
and it is the distinctive feature of our method. These constraints are encoded
into an optimisation matching algorithm.

An overview of the proposed algorithm is shown in Figure 1. Lines segments
are extracted in three images taken from different viewpoints. Segments which
are collinear are grouped into a single line as our algorithm primarily uses only
orientation information. Each line segment is represented by an N-vector [4],
which is the unit normal to the plane that contains the image line and the
optical centre of the viewing camera. The second stage of the algorithm is a
simple pruning step that discards inadmissible matches using heuristics such
bucketing of lines and line similarity information which are commonly used by
other authors [1, 2, 3, 6, 7, 8]. In addition, the proposed weak unary orientation
constraint is also used in this step. Note that they are applied with loose
thresholds so that they throw out wrong matches but retain the subset that
includes the correct matches. The objective of the second stage is to quickly
reduce the size of the matching problem. In the third step of our method
the proposed unary and binary orientation constraints are encoded into a cost
matching function. The configuration of matches represented by the minimum
of the cost function correspond to the best correspondence of the image lines.
Any suitable optimisation algorithm could be used for minimisation but in this
work we have used simulated annealing in order to find a global minimum.
The computational cost of the process kept manageably low as the number of
matches has been reduced by the preceding grouping and pruning stages.

The rest of the paper is organised as follows: section 2 discusses in detail the
geometric constraints for the orientation of lines viewed from three different
views and derives the unary and binary constraints. Section 3 shows how the
constraints may be encoded into a matching cost function and briefly discusses
the simulated annealing method that is used to find the minimum cost solution.
Section 4 shows experimental results of tests of the algorithm on both real and
synthetic data while Section 5 summarises the contribution of the work and
offers suggestions for its future development.
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2 Line Orientation Constraints
In this section, the representation of 2D and 3D lines is considered and the
relation between 2D lines and 3D lines is established. Geometric constraints
for orientation of lines among three different views are explored. Two kinds
of orientation constraints for matching lines in three images are introduced:
unary and binary orientation constraints.

The camera model used is the pinhole model and perspective projection is
adopted as the model of the image formation process. The relation between a
3D point and its 2D projection is expressed by the following:

= T

where (u, v) are image coordinates, w is a scalar, (x, y, z) are 3D point coordi-
nates, T is a 3 x 4 matrix called the perspective transformation matrix and is
defined up to a scale factor.

Points and lines in the image plane are represented (uniquely up to a sign) by
unit vectors of homogeneous coordinate called N-vectors [4]. The unit vector
starting from the optical center and pointing toward a point P in the image
plane is called the N-vector of point P. The unit vector normal to the plane
passing through the optical center C and intersecting an image plane along a line
1 is called the N-vector of line I. Figure 2(a) shows an example of representation
of a point and a line by N-vectors.
For 3D vectors o, 6 and c the following notations are used throughout the
paper: a.b denotes the inner or dot product, a x b denotes the cross product,
< a,b,c > = (a x b).c = (6 x c).a = (c x a).b denotes the scalar triple product,
[a] = a/\\a\\ denotes the normalization of vector a and ||a|| denotes the norm
of vector a.

The N-vector, m, of a point P(u, v) can be obtained from the perspective
projection matrix T as m = [(<i — u<3) x (<2 — vts)] where the vector <,• =
(Ui,ti2,ti3) and tij is an element of T. The N-vector, n, of a line 1 is then
simply given by the cross product of the N-vectors of any two points which lie
on the image line i.e. n = m j x m.2.

A 2D line and the optical centre define a plane in 3D space and the N-vector
describes the normal to that plane. If a line is taken from each of two distinct
views then the two planes generated may intersect in 3D to define a 3D line.
The equation of the 3D line is easily calculated from the N-vectors, n i , ri2 of
the two lines. The 3D scene line can be parameterised by a unit direction
vector v and the foot of the normal point, Q, on the 3D line, v and Q can be
determined using the relations (see Figure 2(b)):

v = n1xn2, OQ.v-0, QCi.ni-0, QC7.n1 - 0

However, taking a line from each of two views is not a sufficient condition to
guarantee the existence of a physical line in 3D. Any matched pair of lines
will generate a hypothesis for a 3D scene line but it can only be verified as a
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Figure 2: (a) N-vector m representing a point p and n representing line 1 on
the image plane I, where C is the optical center, P and L are the corresponding
3D point and line, respectively (b) Reconstruct 3D line by two views

physically realisable line by finding a match with a geometrically consistent line
in a third view. The geometric constraints on lines in three views will now be
explored and used to define criteria for identifying correct line correspondences.

Consider images taken from three different viewpoints in which lines can be
represented by N-vectors as shown in Fig. 3. If the N-vectors of the projection
of a given 3D line in each of the 3 views are denoted as T»I, n^ and TI3 then two
unary orientation constraints (so called as they relate to the match of a single
3D line) can be defined as follows:

Weak Unary Orientation Constraint:

fw l, n2, n3) = < nl, n2, n3 > = 0 (1)

This constraint is called a weak constraint as it is a necessary but not sufficient
condition for a correct match. It is used to discard inadmissible matches in the
pruning step in our scheme. A single match m = {ni, 712,713} is correct iff a
pair of 2D lines {ni,n.2} reconstruct the same 3D line as a pair of 2D lines
{ri2,n3}. Thus a stronger unary constraint is:

Unary Orientation Constraint:

/u(ni,n2,n3) = - C3x, - C3y, - C3z) n3 = 0 (2)

where Q12 denote the foot of the normal on the 3D line reconstructed by
{711,712} and C3 is the viewpoint of the third camera (see Figure 3).



331

Figure 3: N-vectors representing lines in trinocular vision

Further constraints can be found by considering the geometric relation for a
pair of matches mi = {n;i,«ji,njfci} and m2 = { n . ^ n ^ n ^ } - A 3D line
can be constructed by two 2D lines in different viewpoint images. For three
views, there are two independent combinational two 2D lines, say, (ra,i,nji)
and (nji, Tin). Since mx is supposed to be a correct match the constructed 3D
lines v\ — [n,i x riji] and v2 = [riji x nk{\ are supposed to be the same line.
Similarly, the 3D line u\ = [n,2 x rij2] and u2 — [nj2 x nk2] are supposed to
be the same line. Thus, the angle between line V\ and line ui should be equal
to the angle between line v2 and line u2. Thus we have the following binary
constraint (so called as it involves pairs of matches):

Binary Orientation Constraint:

fb((nn,nj
: nji].[ni2 x n.j2]) - ([n,i x nk{\.[nj2 x nk2])

= 0 (3)

This constraint can be used to enforce mutually support between correct matches.

It is worth noting that the proposed orientation constraints are viewpoint inde-
pendent. This is in contrast to other methods that use orientation information
primarily as a similarity measure for matching. Similarity approaches only
work where the angle between views are small and are therefore viewpoint de-
pendent. The proposed orientation constraints make extensive use of the third
view and are valid for all viewing positions.

It is also worth noting that the proposed constraints are local constraints, in
the next section we discuss how they can be incorporated into a matching
framework where the correct matches are determined by the global minimum
of a cost function. The minimum is found by making local changes to search
through the solution space.
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3 Matching as Optimization
In this section, we concentrate on the representation of the solution space for
the three view matching problem and then formulate a cost function which
aggregates local costs to quantify the global goodness of the solution. The
three view stereo matching problem then corresponds to locating the minimum
cost solution and this is achieved via local changes using simulated annealing.

A JV[ x JV2 x JV3 binary matrix P, where Ni, N2 and N3 are respectively the
numbers of lines in each of the three images, is used to represent a solution of
the stereo matching problem. An element of P is defined by:

n(i 1 k\ - ( 1 i f (*•J) *) 'S a m a t c h M\
P(*.J .*)-{ 0 otherwise W

Since a line in an image can match at most one line in the other images or no
lines due to occlusion, P is constrained to have the following property:

JVi N3 N3

(i,j,k) = 1 or 0 , X>(z\j,fc) = 1 or 0 and £ p ( t , j,k) = 1 or 0 (5)

In principle, the solution space of the problem, S, is the set of all possible
values of the matrix P subject to the constraint defined by the above equation.
However this is extremely large and therefore it is necessary to reduce the size
of 5 by pruning the set of lines and matches using simple heuristics based on
factors such as grouping of collinear segments in a single image and applying
loose similarity constraint and weak orientation constraint to exclude infeasible
matches between images.

The cost of a particular feasible solution can be expressed a linear sum over all
admissble matches in solution space of two terms:

Pi(h, h, ki)P2{h, h, h)E2{(h, ji, ki),(t2, J2t h)) (6)

The first term relates to the degree of satisfaction of the unary orientation con-
dition while the second term relates to the binary orientation constraint. Ai and
A2 are weight factors controlling the relative influence of the two constraints.
In our work so far we have used Ax = A2 = 0.5 throughout although this choice
warrants further detailed investigation. The particular form adopted for energy
terms, E\ and En, is

El = exp ( — j , E2 = exp ( — j (7)

where cr\ and a^ is the control parameters set to values related to the expected
variance of the values of the orientation constraints. In all our work the values
of <T\ and (72 were fixed.

In order to find the minimum cost solution of the matching function we have ap-
plied the method of simulated annealing [5]. This is a stochastic search method
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in which state changes that lead to cost decreases are always accepted but local
changes that result in a cost increase may be accepted with a small random
probability. This strategy allows the search to jump out of local minimum and
asymptotically guarantees convergence to the global minimum. The probabil-
ity with which cost increases are accepted is varied as the process continues,
being initially high but then decreasing later. The parameter that controls this
probability is known as the "temperature" following the analogy of annealing
in physical systems.

4 Experimental Results and Discussion

In this section results are presented of the algorithms performance on both syn-
thetic images and real trinocular stereo data. All algorithms were implemented
in C and run on a Sun Sparcstation.

Synthetic images were generated using the Rayshade software package. This
permits scenes composed of simple geometric primitives to be constructed and
allows explicit control and knowledge of factors such as viewing parameters and
noise. Parts (a), (b) and (c) of Figure 4 shows a typical triplet of images of the
corner of a laboratory. These images were processed by an implementation of
the Canny edge detector and lines were extracted using a Hough Transform.
It should be noted that matching methods based on line attribute similarity
would fail to match several of the lines in these images as the viewpoint changes
are relatively large. The results of the algorithm for this test image are shown
in parts (d) through (f) of Figure 4, where correct matches are shown via line
numbers placed adjacent to the lines i.e. line number 1 in (d) is matched to
line number 1 in (e) and line number 1 in (f). In this example all 15 lines
are successfully matched. On a larger selection of synthetic images the average
correct matching percentage was about 90%. Incorrect matches can generally
be attributed to not having obtained a global minimum in optimization. The
computation time for these images was less than 1.5 minute of CPU.

To test the robustness of our method synthetic image data was corrupted by
adding uniform random noise to each of the three components of the original
line N-vectors. The amount of noise added to each component was a constant
fraction of the size of the component. The method was found to work reliably
up to values of noise where the maximum deviation in orientation was 2.5
degrees. The average correct matching percentage was about 85%. We found
that presence of noise in these cases results in more local minimums in cost
function, but global minimum of cost function still corresponds to the best
matching. It means that the proposed unary and binary orientation constraints
have a fairly stringent tolerance on noise.

The algorithm was also tested on real data which was supplied to us by Dr
Ayache of INRIA. This data has been extensively used by him and his colleagues
for experiments in trinocular stereo matching. Figure 5 shows one of the four
triplets which were analysed. Processed line data was also supplied by Dr
Ayache based on line detection using a recursive line splitting routine. The
characteristics of this line detector are slightly different from that of the Hough
based detector. The three images contained 282, 300 and 307 respectively and
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our algorithm found 156 correct line correspondences (lines with length less
than 10 pixels were excluded). This is better than the 129 line matches found
by Ayaches's method [2].

Simulated annealing has been adopted in the initial proving stages of our al-
gorithm development as it provides a relatively simple, general purpose and
reliable method of finding a global minimum. However it is a computationally
intensive method and therefore it is entended to explore more specialised op-
timisation methods which will better exploit the structure of the problem and
lead to faster solutions.

A consequence of the slowness of the optimisation method used was the adop-
tion of heuristic methods to reduce the search space via grouping of all line
segments in the same straight line as one feature at an early stage of the pro-
cess. This potentially introduces a weakness into the method as two lines
which physically unrelated but accidentally collinear in one but not all views
will be represented by different structures in different images and as the match-
ing scheme enforces unique matches between lines in all frames this may cause
some lines to remain unmatched. However, to date we have not found these
accidental alignments a common situation.

5 Conclusions
In this paper a novel method of finding correspondences between line segments
in trinocular stereo images has been developed. The method exploits con-
straints based on the orientation of lines and encodes them into a matching
function. The method has advantages over previous methods: (1) it works
for arbitrary viewing positions whereas previous methods often make the as-
sumption of similarity of viewing positions; (2) it can deal with occlusion and
line fragmentation whereas many line based methods fail because calculated
endpoints or midpoints of image line segments don't correspond to the corre-
sponding points on the 3D line.

Experimental results show the method is effective for both synthetic and real
trinocular image data. Future work will include more detailed studies of the
method on a greater variety of images and the development of better compu-
tational methods to solve the global optimisation problem.
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Figure 5: Real Trinocular Stereo Data and Results


