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Abstract
In many object recognition systems only geometric constraints on the boundaries of the
objects are used. Many authors have shown the merit in determining the distinctiveness
of boundary constraints, and using these to speed up and improve the robustness of
object recognition algorithms. However, if the objects have variable shapes or the image
is cluttered, then the use of boundary constraints alone can cause object recognition to
be be both slow and lacking in robustness. We present a method for expressing grey
level constraints using the grey levels along symmetry chords. We describe a method for
forming groups of symmetry chords, and calculating their distinctiveness on the basis of
the grey levels along the chords in training images. We show how distinct groups of
symmetry chords can be used in object recognition by creating evidence images for
specific groups of boundary points. Our initial results are promising.

1 Introduction
Most object recognition methods for 2D objects fall into the following framework.
The object is modelled by its boundary, which is divided into segments, and the
object is found by finding part or whole boundary segments. Geometric constraints
are used for the matching of image segments to model segments, and to ensure
consistency between pairs of matched image and boundary segments. Many authors
have shown that using the distinctiveness of a segment or a group of segments can
speed up and improve the robustness of an object recognition algorithm [ 1, 2, 3 ].

However, if the objects have variable shapes or the image is cluttered, then the
use of boundary constraints alone can cause object recognition to be both slow, and
lacking in robustness. The following example illustrates the problem. Two image
boundary segments may match two model boundary segments which belong to the
same model, and the pair of matches may be geometrically consistent, but the
image boundary segments may in fact belong to different objects. These bad
matches can significantly reduce the speed and robustness of object recognition.
The additional constraint of the expected grey levels between these segments can
often exclude such bad matches.

We are interested in finding ways of expressing grey level constraints which
satisfy the following criteria:

1. They must model variability, which should be learnt from training data.
2. Be able to cope to some extent with partial occlusion.
3. Be unaffected by scaling the grey levels in the image.
4. Be able to cope with variations in spatial size.
5. Allow the calculation of distinctiveness from training data.
6. Be reasonably general.
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Figure I. A rectangle and a group of symmetry
chords. YA and Yg are the sets of bound-
ary points which correspond to the possi-
ble positions of the two ends of the sym-
metry chords in this group.

Figure 2. Definition of a symmetry
chord.

We have explored the possibility of using the grey level profiles along symme-
try chords as grey level constraints, and will give some justification for this in sec-
tion 2. In many cases, symmetry chords belonging to the same symmetry region
have similar grey level profiles, and so these are grouped together to form groups of
symmetry chords on the basis of the grey levels along the chords in a set of training
images. We then calculate the distinctiveness of each group of chords with respect
to all the other groups of chords.

A distinct group of symmetry chords G can be used for object recognition by
creating evidence images for the two sets of boundary points YA and YB which
correspond to the possible positions of the two ends of the symmetry chords in G
( Fig 1) . The edge points in the image are found using the method of Canny [ 4 ].
All the possible symmetry chords between pairs of edge points which have a length
which lies within the range of lengths of the chords in G are found. For each chord,
the probability that it belongs to G is calculated using the grey levels along the
chord. Using these probabilities, we calculate for each edge point, the probability
that it belongs to the set of boundary points YA, and the probability that it belongs to
the set of boundary points YB, thus creating two probability images. These probabil-
ity images contain far fewer unwanted points than the original edge image, and can
easily be incorporated into any of the standard object recognition methods.

2 Grey levels along symmetry chords
In this section we will explain why we have chosen the grey level profiles along
symmetry chords as a way of expressing grey level constraints. We will also de-
scribe how the grey levels are represented.

We are trying to find distinctive constraints which apply to parts of the grey
level landscape. There are a number of options as to what kind of parts of the
landscape to use: 2d patches of any shape; curves of any shape; or chords. The
advantage of using 2d patches rather than curves or chords is that there is a better
chance of finding patches which are very distinctive, since they contain more infor-
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mation. However, the extremely large number of possible patches makes it difficult
to construct an automatic method for finding distinctive constraints. There are also
a large number of possible curves, and therefore we have decided to try to find
distinctive chords.

We will consider only the chords which begin and end on object boundaries.
This has the advantage that it greatly reduces the number of possible chords. One
option would be to use all such chords, and parameterise each chord by the follow-
ing parameters: length; the angles between the boundary normals and the chord;
and the grey levels along the chord. However, the number of possible chords is still
very large. If we model the boundaries in an image by N discrete points, then there
are O( N2 ) possible chords. For each of these chords we would have to collect the
grey level profiles from several training images. N does not have to be too large
before this results in an unmanageable amount of data which has to be stored and
processed.

The number of of chords can be reduced by putting a constraint on the angles
between the chord and the boundary normals. We have investigated the constraint
that a chord must be a symmetry chord [ 5, 6 ]. In Fig 2 OAB is the angle of the
symmetry chord AB with respect to the boundary normal at A, and ^BA is the angle
of the boundary normal at point B with respect to the chord BA. The chord AB is a
symmetry chord if <PAB = ^BA-

The locus of the midpoint of the symmetry chords of a boundary takes the form
of a number of disconnected symmetry axes. The set of chords associated with a
symmetry axis can be considered to 'cover' a region, and we refer to such a region
as a symmetry region. For many objects, symmetry chords in the same symmetry
region have similar grey level profiles. Thus we are unlikely to be able to find a
symmetry chord which is distinct with respect to all other chords. Rather, we hope
to find groups of chords which are distinct with respect to all other groups. By
moving from trying to find a distinct chord to finding a distinct group we are reduc-
ing the specificity of the method, but we are increasing its robustness to occlusion.
A symmetry region can be partially occluded, and still have some of its symmetry
chords unoccluded.

We have investigated representing the grey levels along a symmetry chord in
four different ways: either the grey levels or the values of the component of the
gradient in the direction of the chord are used; in each case either the unnormalised
values are used, or the values are normalised by dividing the values by the sum of
the absolute values along the chord. The values of the component of the gradient in
the direction of a chord are obtained from the x and y components of the gradient of
the Gaussian smoothed images which are produced by the first stage of the Canny
edge finding scheme. To ensure a fair comparison, the values of the grey values are
taken from images which have been smoothed by a Gaussian filter with the same
standard deviation as was used for the edge detection. If it is required that the
constraints be unaffected by scaling the grey levels in the image, then the values
must be normalised. The advantage of using the component of the gradient in the
direction of the chord is that the constraints are also unaffected by a uniform con-
stant being added to the grey levels of the image.

For convenience we will often refer to the values of any of these representations
of the grey levels along a chord as 'the grey levels along the chord', and denote their
values by the vector g. The grey levels along a chord are not independent, and so we
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Figure 3. An example of an unwanted
symmetry region.

Figure 4. A symmetry chord for
a discrete boundary.

describe the distribution of the grey levels by their mean g , and their covariance
matrix S.

3 Finding distinct groups of chords from training data
We now describe an automatic method for finding distinct groups of chords. For
each symmetry region we need to end up with a discrete set of chords, so that the
grey levels along each chord can be sampled from the training images. We have
therefore decided to model the object boundary as a discrete set of points, and to
calculate the symmetry chords only between these points. Initially, we will only
consider boundaries which are slightly variable.

3.1 Calculating the symmetry chords
We do not want to calculate all the symmetry chords for two reasons. Firstly, the set
of chords in the symmetry region of the rectangle shown in Fig 3 have widely vary-
ing lengths and are unlikely to have similar grey level profiles. We are therefore not
interested in such symmetry regions. Secondly, there is the well known problem that
all the chords of a circle are symmetry chords. We have decided to find only the
chords which are diameters.

In the continuous case, the condition for a symmetry chord is that <J>AB = ^BA
exactly. However, in the discrete case, this has to be relaxed. Consider point A in
Fig 4 which lies on the boundary of a rectangle. In general, there will not be a point
on the opposite side of the rectangle which lies directly opposite point A. The condi-
tion for a symmetry chord has to become | <t>AB - ^BA I < ti, where t! depends on
the spacing of the points along the boundary. There may be more than one point
opposite point A which satisfies our relaxed condition, and therefore we choose the
chord for which | <J>AB - ^ B A I is a minimum with respect to B.

By introducing a second condition that | <t>AB | + | *BA I is a local minimum with
respect to B, we find only the symmetry chords in circles which are diameters. A
third condition that | <J>AB | < t2 rules out symmetry regions like the example in Fig 3.
Thus our set of conditions for a symmetry chord are:

h ,

h .

+ \<&AB\ + \^VBA\ ^ a local minimum with respect to B.

The third condition is valid for both axial and circular regions.
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3.2 Grouping the chords into symmetry region chord sets

We refer to the set of chords which belong to a symmetry region as a symmetry
region chord set. For the symmetry chords of a discrete boundary, we define a
symmetry region chord set as follows. Each chord is specified by its start point a,
and its end point b, where a = 1 .. NbOund. and b = 1 ..Nb0Und- A symmetry region
chord set is an ordered set of symmetry chords ( ajs bj), j = 1 .. Nregion, such that:

1. aj is monotonically increasing.
bj is monotonically increasing or decreasing.

2. aj - aj-i <= 1
I bj - b j . : | <= 1

3.3 Getting grey level data from the training images
For each image in the training set, the model boundary is matched to the image
manually, and for each of the symmetry chords the grey levels are sampled along
the chord. For a given symmetry chord we use the same number of equally spaced
sampling points for each image. This ensures that the method can cope with varia-
tions in spatial size. The number of sampling points is determined by the maximum
length of the chord in the training images, and the standard deviation of the Gaus-
sian filter used to smooth the images. We currently sub-sample by a factor of 2
times the standard deviation. We compute the mean g", and the covariance matrix S
for each chord.

3.4 Forming groups of similar chords

We currently choose groups of similar chords manually. However we envisage an
automatic method of grouping which consists of two stages: for each symmetry
region we form groups of chords, such that within groups there is little variation in
g and S; then, within an object, similar groups are merged. For each group, the
overall values of g and S are calculated, and these values are used to calculate how
distinct each group is with respect to all the other groups. Thus each group has the
following parameters:

1. A measure of distinctiveness.
2. Overall values of g and S.
3. The range of angles of the symmetry chords with respect to the boundary

normal at A, ^ABl to O ^ •
4. The range of lengths of the chords, lmin to lmax.
5. The number of sampling points for the chord ns.
6. The set of boundary points YA which corresponds to the possible positions of

point A.
7. The set of boundary points YB which corresponds to the possible positions of

point B.
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Figure 5. Finding the edge points
which form symmetry chords
with the point x/.

4 An application of grey level constraints
If an object contains one or more distinct groups of chords, then we can usefully
create evidence images for specific groups of boundary points. Given an image in
which we want to find the object, the edge points in the image are found using
Canny's method, except that we do not apply any thresholding. For a given group of
symmetry chords Gj, we find all the possible symmetry chords between pairs of
edge points which have a length in the range lmjn to lmax. and an angle with respect to
the boundary normal at A in the range ^AB, to <*>AB2 • For each symmetry chord,
the probability that it belongs to Gi is calculated using the grey levels along the
chord, which are sampled at the same number of equally spaced points for each
chord. Using these probabilities, we calculate for each edge point, the probability
that it belongs to the set of boundary points YAi, and the probability that it belongs
to YBi, thus creating two probability images.

The probabilities that an edge point belongs to YAi, or YBi are calculated as
follows. If a point xi is hypothesised as a member of YAi, then the other end of the
symmetry chord must lie within the sector of an annulus which has radii 1 ^ and
Imax, and range of angles &A + <&ABI to QA + 0>ABl . where 6 A is the angle of the
gradient at xj. In general, there will be a number of edge points within this sector,
and of these, a number will form symmetry chords with point xj, as shown in Fig 5.
Let set XB be the set of edge points within the sector which form a symmetry chord
with point xi. The point xj is a member of YAi and the point x2 is a member of YBi

if, and only if the chord (xi, x2) belongs to the chosen group Gj on the basis of its
grey level profile. Therefore the point x2 in set XB which is most likely to belong to
YB. is the point for which the probability that the chord ( xi, x2 ) belongs to the
group of chords is a maximum. Hence the probability that point xi is a member of
YAl is given by:

P{ xj is a member of YA. | xl5 XB ) = max P{ G, | g( xi, x2 ) )
x2exB

And similarly:

P{ x2 is a member of YBl \ x2, XA ) = max P( Gt \ g( xu x2 ) )
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4.1 Probabilities

It can be seen that we need to calculate the probability that a particular chord comes
from the chosen group of chords. Using Bayes theorem:

P{ G, )P{ g I G, )
P(G,\ g)

P{ G, )P{ g | G, ) + />( Gf )P( g | Gf )

Pi fA g )

Pi /<( g ) + Pc fc( g )

where Gp is the complement of Gj, ps and p c are the prior probabilities that a
chord belongs to Gi and Gp respectively, and f;( g) and fc( g ) are the probability
densities of Gj and Gp respectively. The main decision is what form the distribution
for fc( g ) should take. We have made the assumption that this is a normal distri-
bution, even though we know that there will be spikes in the distribution due to other
distinct groups of chords.

It is computationally efficient to compute the probability via the odds ratio:

odds =

£ rexp( - ( g - & )'S71( g - g )/2 )
(2*)" | ^ | T

r
|Sc|T

r « p ( - ( g - ic )'S-CX g - gc )/2 )
T

exp( -g ' ( S-' - S-C
l )g/2 + ( &'S-1 - gb'Sc1 )g

5 Results
We have applied the method described above to both printed circuit board ( PCB)
and brake assembly images, and have obtained promising results with both sets of
images. The method for automatically finding the distinct groups of chords is not
complete, and therefore we have chosen groups manually which look as if they are
distinct.

We present the results of one of our experiments on PCB images. Both the
training set and the validation set contain 8 images, and an example of one of the
training images is shown in Fig 6. We have chosen the group of symmetry chords
which lie across the bodies of the resistors (there are 41 and 38 resistors in the
training and validation sets respectively ). The edge points which belong to the sets
YA and YB were manually labelled, and these are shown in Fig 6c. The symmetry
chords which were used for collecting training data from this image are shown in
Fig 6d. An example of a validation image, its edge magnitude image, and the set of
points which were manually labelled as belonging to YA or YB are shown in Fig 7 a,
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Figure 6. An example of a training image, a) the original image, b) edge magnitude image,
c) edge points which were manually labelled as belonging to sets Y& or YB, d) symmetry
chords which were used for collecting the training data.

b and c respectively. Fig 7d shows the edge points for which the computed probabil-
ity that they belong to the set YA is greater than 0.5. Because the grey level profiles
along each of the symmetry chords in the chosen group is roughly symmetric about
the midpoint of the chord, the probability that a point belongs to the set YA is
roughly the same as the probability that it belongs to the set YB. Hence this image
corresponds to the membership of the union of the sets YA and YB.

The method was quantitatively evaluated by computing how well it classified
the edge points in the validation set. If the value of a pixel in a probability map is
greater than a threshold, then we consider it to be classified as a member of YA or
YB of the chosen group of chords. ROC curves for the four methods of representing
the grey levels were computed by varying this threshold, and are shown in Fig 8.
The curves are averages over the validation set, and only edge points which satisfied
the geometric constraint of being an end of a symmetry chord with length in the
range lmin to lmax, and angle with respect to the boundary normal at A in the range
O^e, to <PABz were classified. The average number of boundary points per image
which belonged to the sides of the resistors was 449, and of these 412 satisfied the
geometric constraint; the average number of other boundary points was 12623, and
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Figure 7. An example of a validation image, a) original image, b) edge magnitude image,
c) edge points which were manually labelled as belonging to Y^ or Yg, d) edge points
for which the computed probability that they belong to Y& is greater then 0.5.

Figure 8. Classification results: ROC
curves for the 4 ways of repre-
senting the grey level profiles,
and for the geometric con-
straints alone:
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of these 6967 satisfied the geometric constraint. It can be seen that the normalised
gradient representation has the best ROC curve, and is the preferred representation.
We have also given the classification results for the use of the geometric constraint
alone: the ROC curve was obtained by thresholding the values of edge magnitude of
the edge points which satisfied the geometric constraint. It can be seen that using
the grey level constraint as well as the geometric constraint greatly decreases the
number of misclassifications.

For each 256 x 256 PCB image the algorithm takes about 17 seconds on a Sun
Sparc 2 workstation. For the chosen group of chords: lmin = 14, lmax = 20,
9Ml = -18*, and OABl - 18". No prior knowledge of the orientation of the symme-
try chords is used.

6 Conclusions
We have developed a method of expressing grey level constraints which uses the
grey level profiles along symmetry chords. We represent a grey level profile by the
normalised values of the component of the gradient in the direction of the chord.
These grey level constraints satisfy the criteria given in the introduction: they model
the variability in the training data; are able to cope to some extent with partial
occlusion; they are unaffected by scaling the grey levels in an image; they are able
to cope with variations in spatial size; they allow the calculation of distinctiveness
from training data; and are reasonably general. We have outlined an automatic
method for grouping the chords, but the implementation of this needs completing.

We have shown how distinct groups of symmetry chords can be used in object
recognition by creating evidence images for specific groups of boundary points.
These evidence images contain far fewer unwanted points than the original edge
image. The results are encouraging.

There are two straightforward generalisations of the method. Firstly, rather
than the grey levels along symmetry chords, the values of any intrinsic image, eg
texture, could be used. Secondly, instead of the symmetry chords between edge
points, the symmetry chords between ridge points or trough points could be used.
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