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Abstract

Radar images of 95% of the surface of Venus have been obtained by the Magel-
lan spacecraft at resolutions of 100-300 m. The surface area covered is 3 times
the total land-mass area of the Earth; this corresponds to a data volume of about
1011 bytes.

A large population of volcanoes has been observed in this data set. Measure-
ments of these features are essential for a full understanding of Venusian geol-
ogy. The scale of the task, however, precludes the use of manual methods to
make these measurements. An algorithm for the automated location and counting
of these volcanoes is therefore being developed.

The noisy nature of the data makes it appropriate to use correlation-based
techniques to recognise the features. A least-squares-error template matching
algorithm has been implemented, which includes local DC removal and contrast
normalisation.

Preliminary experimental results from running the algorithm on Magellan data
are presented, along with the corresponding measurements of expert human
observers. Because there is no ground truth information for Venus, it has also
been necessary to undertake a control experiment, using simulated radar images
of artificial terrain. The results of this experiment are also included and com-
pared with theoretical predictions: their implications for the calibration of both
human and automated measurements are discussed.

1 Introduction
The main objective of the Magellan mission is to increase knowledge about the geo-
logical history and geophysics of the planet Venus, by mapping its surface [1]. To
accomplish this, a spacecraft containing a synthetic aperture radar (SAR) instrument
was inserted into orbit about Venus in August 1990. Since then, the spacecraft has
returned SAR images of 95% of the planet's surface at resolutions of between 100 and
300 m. Because Venus does not possess any oceans, the surface area mapped by
Magellan is over three times the total area of all the land masses on Earth; this
represents an image data volume of almost 100 Gb [2].

The fact that its bulk properties arc so similar to Earth's makes Venus a unique
and important planetary comparison. By studying its geology and surface processes it
is hoped that our understanding of the formation and evolution of the Earth will be
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improved. Unfortunately, it is impossible to observe Venus' surface using conven-
tional remote sensing techniques because it is continuously obscured by optically
opaque clouds. However, Magellan's radar, operating at a wavelength of 12.6 cm, is
able to penetrate the cloud cover.

Both the Magellan and earlier (low-resolution) Venera 15/16 SAR data have
revealed that small volcanoes are a prevalent feature on the Venusian surface. These
edifices, which are predominantly low shield volcanoes <15 km in diameter, have
been extensively described by several earlier workers (eg. [3,4]). Their abundance
indicates that volcanism has been of fundamental importance to Venus' evolution.
The fact that they are also extremely widespread makes the volcanoes an important
statistical tool for studying Venus' geological history. Measuring their global popula-
tion, spatial distribution and size-frequency distribution would provide important
information about both the geological and geophysical processes on Venus.

However, from previous work it is estimated that the global population of small
volcanic features on Venus is of the order of 5 x 106 [3]. This, together with the vast
size of the Magellan data set (described above), means that even a preliminary visual
survey would take a trained observer at least 5 years. To make detailed, global meas-
urements would therefore be extremely time-consuming and prone to error. It is thus
desirable that an automated method be developed for the consistent identification and
measurement of these features.

This paper discusses one such method which is based on correlation techniques,
specifically a template matching algorithm. There is an additional problem associated
with this task, however: the total lack of ground truth information against which to
calibrate the algorithm. Consequently, the paper also describes a control experiment
which involved generating artificial SAR images of synthetic terrain, designed to emu-
late closely real Magellan imagery of the small volcanoes.

2 Magellan data characteristics
Magellan's SAR transmits pulses of coherent, microwave radiation perpendicular to its
flight-path and records the back-scattered echoes. These echoes are then processed to
form images by analysing their intensity, time-delay and frequency-shift. Multiple
sampling allows the spatial resolution of a larger antenna to be synthesised.

This image formation mechanism is fundamentally different to the way in which
images at visible wavelengths are produced. Consequently, SAR images possess cer-
tain properties which set them apart from conventional images. The slant-
range/doppler SAR coordinate system is very different from the coordinate system of
a traditional image and leads to different types of geometric distortions. The much
longer wavelengths involved mean that radar reflectance characteristics are also
different: radar back-scatter strength is governed by the topography, roughness and
electrical properties of a surface in a complex and incompletely understood manner.
Finally, since they are produced from coherent illumination, SAR data inherently
suffer from the effects of speckle noise, giving them a grainy texture.

These characteristics can place additional demands on pattern recognition algo-
rithms used to analyse SAR data. For example, both the degree of geometric distor-
tion and the dominant back-scatter mechanism observed, depend strongly on the radar
incidence angle, which may not remain constant (as is the case with Magellan).

Due to technical constraints, Magellan's polar orbit is highly elliptical, which
causes significant variation in the SAR imaging parameters. The range resolution
varies from 110 to 280 m, the nominal incidence angle changes from 17° to 47° and
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the number of looks (which affects the speckle noise) goes from 5 to 17. Thus, in
the Magellan data, similar features can appear quite different, depending on which
combination of parameters were in force at that stage of the mapping sequence.

Every orbit, the spacecraft maps a swath that is 16000 km long and 25 km wide.
The SAR data undergo several stages of processing to convert them into grey-level
images. This processing includes both geometric and radiometric corrections, fol-
lowed by resampling to give a uniform pixel spacing of 75 m. Finally, the image
swaths are mosaicked together into data products known as MIDRs. Each MIDR con-
tains 56 Mb of data, in the form of an 8192x7168 array of 8-bit pixels. To cover the
entire planet, 1650 such MIDRs are required. (A full description of the Magellan
mission is given in [5]).

3 Description of algorithm
Because the SAR images are inherently noisy, it is not possible to employ feature-
detection methods which are based on edges or contours. Instead area-based methods
must be used, foremost amongst which is the classical correlation of a template with
the scene. In practice, classical correlation is unsatisfactory because it breaks down
when faced with variations in background brightness or structures whose contrast
differs from that of the template.

The correlation process must be carried out in spatial coordinates to allow for the
locally-varying DC removal and contrast normalisation. These corrections are essen-
tial if low-contrast features are to be detected. Although correlation could be carried
out using global FFT techniques it would be extremely inefficient to implement such
local corrections using these methods.

The algorithm which is used for this work is known to be statistically robust and
relatively insensitive to noise [6]. For a given position within an image (p,q), using a
template of size Nx N, the correlation function C(p,q) is defined as follows

2
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where: t and / represent the pixel values of the template and the image respectively;
and t and / are the mean template value and the local mean image value. The t and
t values are independent of p and q, and are calculated prior to correlation. Here,
(p,q) defines the top-left comer of the portion of the image covered by the template.
This would produce an offset in the final detected position, so, in practice, a correc-
tion is applied to centre the coordinates recorded by the algorithm.

The features being searched for, small shield volcanoes, exhibit a wide range of
morphological types (see fig. 1). For each volcanic type, a distinct set of templates
would have to be employed, to ensure successful matching. This is in addition to the
usual requirement of using a range of template sizes to permit recognition of features
at differing scales. Together with the variable imaging geometry already described,
these considerations make the problem of automatically recognising all of the vol-
canoes in the Magellan data set very demanding.

Template-matching is a numerically intensive process. For correlations under-
taken in the spatial domain, the number of calculations required for a template of size
N, in a scene of size M, is proportional to A/2A/2. The small volcanoes are typically
3-4 km in diameter, or 40-50 pixels in the Magellan images. However, it is estimated
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Fig. 1 Example of a Magellan SAR image showing various
types of small volcanoes: many possess summit pits.

Fig. 2 Radar image simulation of artificial pits of
several sizes, prior to addition of speckle noise.

Note, however, inclusion of random surface texture.
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that 85% of the volcanoes possess central features known as summit pits [4].
Because these pits have high visual contrast, they are discernible at sizes of about 5
pixels, though they are typically about 10 pixels across, with maximum diameters of
20 pixels or more. This means that they can be matched much more rapidly than can
the (considerably larger) complete edifices (since Npit <c N~0icano). The pits are also
more regular in appearance than the volcanic edifices. For these reasons it was
decided to concentrate initially on recognising the summit pits. To further reduce
processing times, it was also decided that preliminary experiments should be per-
formed using sub-scenes from MIDRs of just 512x512 pixels (ie. to restrict M ).

4 Generation of synthetic data
There are two types of error to which all forms of feature identification are subject:
failures, or 'false negatives' (ie. the number of real features missed); and false alarms,
or 'false positives' (ie. the number of non-existent features identified). When dealing
with real, noisy data it is unlikely that pattern recognition algorithms can ever achieve
100% success rates (ie. zero false negatives) whilst making no spurious identifications
(ie. zero false positives). It is therefore highly desirable to be able to assess the abso-
lute accuracy of any chosen algorithm.

With Magellan data, the lack of ground truth forces a dependence upon uncali-
brated human observations against which to compare recognition algorithms. For this
work, it was therefore decided to undertake a control experiment, in order to calibrate
the ability both of humans and the machine to identify small 'pit-like' features, in the
presence of speckle noise. To achieve this, it has been necessary to produce simu-
lated radar images of synthetic terrain, designed to resemble Magellan imagery as
closely as possible. This procedure involved several stages -

1. Production of artificial terrain:
The requirement was for a digital elevation model (DEM) to be produced which
would closely resemble the morphology of volcanic summit pits on Venus. The
characteristics of the shape required were estimated by expert interpretation of
Magellan images of typical pits and by using knowledge of analogous features on
Earth. A 3-D DEM was then generated using B-splines with ten free parameters,
which were varied until the correct shape was obtained. The parameters controlled
morphometric quantities such as pit depth and diameter. Once a satisfactory DEM
was obtained, simulated surface texture was included by adding small random
height perturbations. To reduce large discontinuities, the roughened surface was
then smoothed using 3x3 height-averaging.

2. Radar image simulation:
There are several means by which simulated radar images of a DEM can be
obtained. For this project it was decided to employ a radar image simulation (see
[7]). This technique involved several phases. First, an illumination vector was
defined according to the nominal radar incidence angle that was being used for the
simulation. By considering the DEM to consist of surface facets, a radar
reflectance map was then obtained using simple vector geometry and a suitable,
standard back-scatter model. This map contained the radiometric components of
the simulated image. However, it was also necessary to model the geometric pro-
perties of radar imagery. This was achieved by simulating the effects of slant-
range binning. The bin sizes were made to be significantly larger than the
reflectance map pixels, since in a real radar image, the back-scattered signal is con-
sidered to be produced by returns from many individual scatterers within a
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resolution element.
Binning occurred in the axis of the reflectance map that was parallel to the

illumination vector (the range direction), utilising the DEM once again to ensure
correct simulation of the geometric distortions. Since the range resolution was
now considerably coarser than that in the other axis, cross-range averaging was
performed to make the resolutions in both axes comparable; a similar procedure is
used in real SAR processing to reduce the effects of speckle. Finally, the pixel
brightness values were adjusted to emulate the specific effects of the Magellan
SAR processing sequence (fig. 2 shows examples of the simulated radar images of
artificial pits of various sizes).

The radar image simulation was now complete, except for the effects of
speckle. These were modelled separately and added to the final image (see below).

3. Scene generation:
Simulated radar images were generated for a whole range of pit diameters, from
2-16 pixels. Pre-determined numbers of these different-sized images were then
added to a uniform background (possessing the mean Magellan pixel brightness) to
yield scenes with a variety of pit size distributions. The distributions used
included exponential, 1/radius and uniform.

The algorithm placed each pit at a random location within the 512x512 scene
and stored in a table both the coordinates and the size of the pit. A check was
first made, however, to ensure that the randomly generated location for the pit, was
entirely within the scene and also that another pit had not been previously placed
there. The second restriction was enforced to avoid small pits being covered by
larger ones (fig. 3 shows one such artificial scene).

Fig. 3 Simulated radar scene containing pits of various sizes: includes speckle noise.
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4. Addition of speckle:
Speckle noise is observed in any images produced by coherent radiation. With
SAR images, it results from the interference of returns from many radar scatterers
within a resolution element. Speckle can be reduced by making several statisti-
cally independent observations, or looks, of a target and averaging them. Magellan
always obtains images comprising at least five looks.

SAR speckle can be modelled as a random multiplicative noise source with a
Rayleigh distribution. The effects of speckle were therefore simulated by using a
Rayleigh random number generator to produce a 512x512 'speckle' image, with a
mean value of 1.0. To obtain 'multiple looks', several such images were generated
using different random number seeds. For this experiment, five of the speckle
images were averaged together. Finally, since speckle noise is multiplicative, the
artificial scene was multiplied by the five-average speckle image, pixel by pixel.

5. Resolution degradation:
The last stage of the data simulation, was to emulate the resampling of Magellan
images, described in section 2. To achieve this it was decided to employ 3x3
local-neighbourhood blurring. The blurring kernel was chosen so as to mimic the
resampling of a typical Magellan resolution cell (150x110 m) into 75x75 m pixels.

Fig. 3 is the final product of one such scene simulation, which was used in the
control experiments described in section 6.1.

5 Theoretical correlation performance
This section briefly describes a theory which has been developed to predict the per-
formance of the correlation algorithm with the test data generated using the procedure
outlined above. Consider a template of area A pixels, containing the noise-free image
of a pit: assume that the pixel values in the template are gaussian-distributed with
zero mean and some known standard deviation. The template is shifted across the
scene and is correlated with the scene data according to expression (1). Note that both
the scene data lying within the current window and the template data are first normal-
ised to unit variance. At points in the scene where there is only a uniform back-
ground which is corrupted by speckle, then the correlation function may be written in
the simplified form:

C = E(W» - B^f (2)
A

where tnorm represents the normalised template data values and Bnorm represents the
independently normalised, noisy background values. C is a sum of A independent
samples, each of variance 2, since both £„,,„„ and Bnorm have unit variance. The
expectation value for C , < O , is therefore 24 and its standard deviation, o, is
approximately VzT. By making similar approximations it can also be shown that
when the template overlays a portion of the scene which contains a noisy version of
the template data, the value for <C> is = A, with a standard deviation of VZ4~.

A further assumption is made, that the background values are also gaussian-
distributed (in fact they follow an approximate Rayleigh distribution). There are there-
fore two sets of gaussian-distributed correlation values: one with a mean value of two
and a standard deviation of VzT (the "background" correlation values); the other with
a mean of unity and the same standard deviation (the "signal" correlation values).

A suitable threshold value is now chosen, such that only rarely is a background
correlation value obtained which falls below this threshold, giving rise to a false
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match. Setting the threshold at 2.5a below the background value has been found to be
convenient in practice. Once the threshold has been fixed in this way, one may
readily deduce how often a "true" match will be detected (ie. a value from the signal
distribution which falls below the threshold).

The main error is that the distribution of intensity values in the template is not
gaussian. However, a correction factor may be applied which does produce an
approximately gaussian distribution in the template. Inspection of the distribution of
values shows that a majority (70%) of the pixel values in the template lie very close
to the mean, giving rise to a spike in the distribution. Removing these pixels from the
correlation, results in a probability of detecting a pit which varies with the pit diame-
ter (as shown in fig. 4).
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Fig. 4 Comparison of detection rates for simulated pits: humans, machine and theory.

6 Analysis of results
In this section the results of two distinct sets of experiments are presented. First, the
outcome of the control experiment involving both human and machine measurements
of artificial images is analysed. Second, the results of running the correlation algo-
rithm on Magellan data are assessed, by comparing them with human measurements
of the same data.

6.1 Synthetic data
A variety of tests were carried out with different distributions of simulated pit sizes
and speckle noise levels. Software routines were developed which logged the (x,y)
coordinates where human observers believed that they had detected a pit. Since the
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coordinates of the pits were already known, it was possible to calculate the detection
rate (and false alarm rate) as a function of pit size. Modified versions of these rou-
tines were used to calculate the same quantities for the pit-detection algorithm.

Fig. 4 summarises the results of some of these tests. It shows how the probability
of detecting a pit image varies with the pit diameter. Three sets of points are shown:
one set is the average for all observers and all pit size distributions; one set is the
equivalent for the detection algorithm; and the third set is derived from the theoretical
prediction outlined in section 5.

It can be seen that the three sets of data are very similar to each other (the
differences between the human results and the machine results are almost within the
error bounds for each data point). The departure of the theoretical curve from the
machine results is readily explained, as being due to the approximations used in
deriving the theory. What is perhaps of more interest, is the similarity between the
machine results and the human results, which suggests that some underlying similarity
may exist between two apparently disparate detection mechanisms. In addition,
results such as those shown in fig. 4 can be used to provide corrections to pit size-
distributions derived previously by human observers (eg. [3]).

6.2 Magellan data
To date, the algorithm has only been run with a very limited number of Magellan
images for which human observations are available (eg. fig. 1). The results of this
comparison between the pit detection rates of humans and the machine, using real
Magellan images, are shown in table 1.

Table 1 Pit Detection Results for Real Data
MGN

Image

1

2

3

Observer

CRW
MRBF
CRW

MRBF
JEG
CRW

MRBF
JEG

No. seen
by

observer
42
48
19
37
18
26
36
41

Seen by
observer

only
4
10
8

26
9
7
19
22

Seen by
machine &

observer
38
38
11
11
9
19
17
19

Seen by
machine

only
3
3
4
4
6
6
8
6

No. seen
by

machine
41
41
15
15
15

25
25
25

From this table it is apparent that there are significant variations in the observations
made by humans. It can also be seen that, under certain circumstances, the machine
results are very promising: the algorithm performs well on images where the back-
ground is relatively uniform (although it has yet to be modified to take account of
variations in the background texture which require a variable threshold). Finally, it
was also noted that, whilst some of the pits seen by the machine alone were false
positives, many represented real features that the humans had missed.

7 Discussion
In this paper, we have described the preliminary results of an investigation into the
automatic detection of volcanic features in noisy, radar images. Whilst some progress
has been made towards accomplishing this task, we have had to limit ourselves to
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detecting the small pits which many, but not all of the volcanoes possess. We have
also encountered difficulties when using our algorithm in regions where the back-
ground texture is non-uniform.

In the immediate future, we aim to increase the reliability of the algorithm at
detecting the pits. It is then intended that as much Magellan data as possible is pro-
cessed using the improved technique. At the same time, modifications will be made
to enable detection of the volcanoes themselves, probably using reduced-resolution
Magellan data.

This leads to the question of processing times. At present, running on a Sun
SPARCstation 1+, the algorithm is able to scan one 512x512 pixel image, making
several passes with different-sized templates, in approximately 30 minutes. For
regions with high volcano-densities, this time is comparable to that required by a
trained geologist to undertake the same task of recognising and recording the coordi-
nates of all the volcanic edifices. The machine, however, has certain advantages over
the human observer. In particular, it could, in principle, process data 24 hours per
day with little human intervention. Furthermore, from the experiments conducted
with artificial data, it has been discovered that humans occasionally miss large
features for which the machine has a consistent, 100% success rate.

In conclusion, therefore, whilst still at a relatively early stage of development, the
methods described here appear to have great potential in the fields of planetary sci-
ence and remote sensing. Data sets in these areas are already reaching sizes that
make comprehensive analysis by trained observers impossible. As the processing
speeds of relatively inexpensive computers continue to increase, however, automated
image-data analysis and reduction will become an increasingly important and effective
scientific tool.
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