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Abstract

Neural networks are applied to the problem of detecting structural aberrations
in chromosomes from shape. We present a simple technique for initial location
of scattered chromosomal objects within multi-resolution images of human
blood cells. A system for classifying located objects is also described. It is
proposed that the system be applied to multi-resolution images. Application to
low resolution images is illustrated.

1. Introduction

The rapid development of human cytogenetics in recent years has produced an increased
awareness of the relationships between chromosomal abnormalities and medical disor-
ders, which in turn has lead to a large growth in the volume of clinical microscope work.
There is now an great demand for rapid, accurate and cheap methods for analysing chro-
mosome spreads. Currently, semi-automated systems are available for clinical karyotyping
(1), prevalent in pre-natal screening, where the task is to determine the characteristic chro-
mosome constitution of an individual. However, no systems are available for chromosome
aberration scoring - the search for specific structural abnormalities within a cell.

A number of physical and chemical agents can induce chromosome structural aberra-
tions - breakage and rearrangement of chromosomal material. Affected cells may contain
unusually shaped objects, or have abnormal chromosome constitutions, and this may be
spotted by a skilled cytotechnician using a microscope at high magnification. There is,
however, a shortage of skilled technicians and their training - which for the most part con-
sists of viewing many examples of damaged cells - is time consuming. Attempts at auto-
mation have focused on image segmentation, measurement of predefined features, and
classification based upon these measurements (2-4). However, this approach has failed to
cope with the general variability in chromosome appearance. Chromosomes are often
bent, or they may touch or overlap. Diffraction effects make objects appear fuzzy under a
light microscope. In addition, the existence of staining gradients and artefacts is trouble-
some.

We use neural network systems acting on multi-resolution images in an attempt tackle
the problem of variability. Neural networks are adaptive systems of interconnected units
which acquire knowledge through experience rather than preprogramming. Knowledge is
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stored implicitly in the connection strengths, and recalled in response to the presentation
of cues. We hope that by presenting many examples of image portions to neural networks
that they can learn through experience to locate chromosomal objects, and to extract
image features which permit centring and classification of located objects. Simple, super-
vised, single-layer networks are employed in the initial location of scattered chromosomal
objects within a cell. Kohonen self-organising maps (5) are used to extract salient image
features within windows placed in the neighbourhood of located objects. Feature extrac-
tion forms the first stage in a centring and classification system.

We have been fortunate to have had assistance from a cytogenetics company in our
work. As a result we have been able to learn much about how cytotechnicians recognise
structural aberrations, and compare their classification of microscope cell images and dig-
itised (computer) images. In addition, access to a large set of mutagen-treated blood cells
has been provided.

2. Initial Location of Chromosomal Material

2.1 Data Set.

Photographs of mutagen-treated human blood cells at metaphase were taken using a
microscope-camera system, with enlargements produced and scanned. The resolution of
digitised images obtained ranged from 750x750 to 1200x1200 pixels. 256 grey levels
were available. Figure 1 shows a portion from a cell image.

Figure 1. Portion from a cell image. Cells usually contain 46 chromosomes
of varying size and orientation.
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A number of images were chosen from the collected set and rescaled by linear inter-
polation to be 512x512 (the originals were approximately square), and a lowpass circular
filter of diameter 128 pixels applied (in the frequency domain). Each resultant image
formed the base for a 3-layer Gaussian pyramid. We convolved 4x4 neighbourhoods of
base level images with Gaussians of standard deviation 1.0, to produce pixel values for the
pyramid layer above. By only choosing neighbourhoods centred on every other pixel in
every other row a reduction of 2 in each dimension for the next layer was achieved. By
repeating the process 512-256-128 Gaussian pyramids were created.

2.2 Network Training.

One simple, supervised, single layer neural network was associated with each of the three
levels in our pyramids. Units in a network were arranged as a 2-D sheet. All units had an
associated adjustable reference vector m(t), where t is a time step, and all received identi-
cal inputs x(t), namely the set of normalised image portions grabbed by a moveable win-
dow on an image . Each unit in a network was designated responsibility for signalling the
presence of chromosomal material within a particular subregion of the window; if a net-
work consisted of n x m units then the window would be divided into n x m regions, and
unit (i j) in the network would be responsible for signalling the presence of material cen-
tred within window subregion (i,j). For each pyramid level many image portions containi
ng chromosomal material were presented to a network. Each time, the reference vector of
the responsible, or required winning unit, w, and its neighbours, (following Kohonen, see
section 3), were adjusted to be closer to the image input x(t),

m,{t) +a(t)x(t)
™ ( < + i ) ; < ' 6 * < ' » ( i )

m,(t+l) = m,(t) (i£Nw(t))

Each of the three networks contained 5x5 units and input images were 64x64 pixels.
During training the neighbourhood, Nw(t), a square centred on the required winning unit,
decreased from 5x5 units to lxl units (i.e., just the required winner) over the first 500
steps. Thereafter it remained at lxl units. Since neighbourhoods encompassed different
subsets of units the net effect of adjustments for each unit in the network tended to be
smoothed out over time. (So, for example, if a unit was seldom chosen as the required
winner early in training, its reference vector would tend towards an averaged version of
the vectors of units in its neighbourhood).

We took ot(t)= 100/t, so that as the neighbourhood decreased so did the magnitude of
reference vector adjustments. Over 1000 steps were carried out for each network. Units in
each network developed into something like blob detectors whose receptive fields over-
lap. Network reference vectors for each pyramid level are shown in figure 2.
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2.3 Recall.

Once trained the three networks could be used in a recall phase to locate chromosomal
material. Gaussian pyramids were constructed from cells not in the training set.Units were
assigned activations according to the inner product between their reference vectors and the
input (both normalised), and the unit with the greatest activation was deemed to best indi-
cate the position of a chromosomal object. The best guess location of an object was taken
as the centre of the window region which had the same row-column coordinates relative to
the window as the winning unit had relative to the network. Once found, the best guess
location at one level determined the position at which to centre the window at the level
below. As we moved down from the top pyramid level it was possible to locate chromo-
somal material with increased precision. Furthermore, by gradually reducing the window's
size at the pyramid base, and only matching with reference vectors over this region, we
could land on chromosomal material with great reliability even in the presence of clutter.
A test on 8 pyramids constructed from 8 cell images not in the training set produced one
"missed" chromosome at the base level from a total of 374 start positions at the top pyra-
mid level. Here the size of base level window was gradually shrunk from 64x64 to 9x9
(about a chromosome's width) in steps of 5 pixels.
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Figure 2. Reference vectors learnt by the networks for the top, middle and
bottom pyramid levels.

3. Classification of Low Resolution Images

Given that we can land on chromosomal objects we would like to centre on them (the pyr-
amid system lands on chromosomal objects but does not necessarily find their centres),
and perform some classification. Due to the varibility in chromosome appearance we are
initially only interested in estimating the rough position, size and orientation of objects
within low resolution cell images. This information may then be used to constrain chro-
mosome appearance at higher resolutions. The centring and classification system
employed on low resolution images (128x128 pixels) is shown schematically in figure 3.
The system is centred around the use of a Kohonen network for feature extraction.
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Figure 3. Schematic diagram of centring and classification system.

3.1 Feature Extraction.

The Kohonen Network or Self-Organising Map is a self-organising neural network whose
units become specifically tuned to various features present in a set of input signals through
a period of unsupervised training. Moreover, the locations of responses on the network
tend to become ordered such that nearby units respond to similar input features.

Our supervised networks in section 2 were based upon the Kohonen network. During
training we specified a required winning unit for each input image, and adjusted the refer-
ence vector of the required winner and its neighbours accordingly. As stated, the Kohonen
network itself is unsupervised. Each time an input vector is presented to the network the
winning unit is not specified by the user, rather it is taken as that unit whose reference vec-
tor is closest by some distance measure to the input vector. When input and reference vec-
tors are normalised a suitable updating algorithm for reference vectors is as given in
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equation (1) for our supervised networks, but with the winning unit, w, now such that

xT{t)mn,(t) = max{xT(t)mi(t)} (2)

The effect of equation (2) is that, over many time steps, units tend to become specifi-
cally tuned to particular domains of the input space. Furthermore, because reference vec-
tors in the neighbourhood of the winner are adjusted, nearby units on the Kohonen
network respond to similar input features. At small time steps the neighbourhood is cho-
sen to be relatively large in size, encouraging a rough global ordering of reference vec-
tors. Gradually the neighbourhood is decreased in size, usually until just the best-
matching vector is updated.

Our Kohonen network is arranged as a 2-D sheet, 8x8 units in size. Inputs are nor-
malised image portions grabbed from each window within a set of 5x5 overlapping win-
dows placed on low resolution cell images. The window set is centred on positions located
by the pyramid system described in section 2. Each window is 8 x 8 pixels. Neighbouring
windows overlap by 60%. (The characteristics of the window set are chosen after consid-
eration of: the need to encode similarity between features without losing the ability to
express differences; the requirement that the window set covers chromosomes; the need
for computations to be performed in a reasonable time).

During training we took a(t)=100/t. The square neighbourhood, Nw(t) decreased
from 7x7 units to lxl units over the first 1000 steps, remaining at lxl thereafter. Over
10,000 steps were performed in all, where a step corresponds to the presentation of a sin-
gle image portion. The feature map for the trained network is shown in figure 4. It consists
of blob and bar-like features. (The map provides for good reconstruction of images from
their extracted features, indicating that the window set chosen is reasonable).

Figure 4. Feature map for low resolution images.
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It is the responses of the trained Kohonen network to each image portion that deter-
mine the values on our activation map. The activation map is a 2-D sheet of binary units.
The sheet is divided into 5x5 regions to mirror the organisation of the window set We
transform the Kohonen network responses produced for each image portion, setting the
most responsive Kohonen unit to 1, all others to 0, and copy these responses onto the
appropriate region of the map. Thus, the activation map identifies the best-matching fea-
ture for each of the image portions grabbed by the window set.

3.2 Auto-associative Networks.

The activation map is the input layer of two auto-associative neural networks - one
involved in centring, the other in classification of centred objects (see figure 3). Associa-
tive networks learn to store input-output pairs of patterns during a period of training.
When a noisy version of an input pattern is then presented to a network, the associated
(noise-free) output pattern is retrieved (under certain conditions relating to storage capac-
ity of the network). For auto-associative networks the input and output patterns are the
same - networks learn to associate patterns with themselves. When a noisy pattern is pre-
sented to such a network the noise-free pattern is retrieved.

As stated, our auto-associative networks (which are similar to the Willshaw network
(6)) have the activation map as their input layer. Output layers are identical in structure to
the activation map (i.e., 2-D sheets of 40x40 binary units, divided into 5x5 regions). We
taught networks to store activation map states produced from images of "good" chromo-
somes (i.e., straight, uncluttered and non-overlapping) . During training we simply
clamped a network's output layer into the state of its input layer (i.e., the activation map),
and created connections between an input unit-output unit pair if the units were on
together.

On recall, we wish a network to output a stored activation map state given a noisy
version as input. We set the output state of unit i which is in region S, to 1 if

(3)

where Ij is the state of input unit j and Ty=l if input unit i and output unit j are connected,
Tjj =0 otherwise. If the inequality is not satisfied the output of unit i is set to 0.

In effect, each of the best-matching features encoded in the input state votes for com-
patible features to be present in the output (or retrieved) state. For each region of the out-
put layer the feature with the most votes is chosen. While our auto-associative memories
can retrieve states which permit centring on, and classification of, relatively straight
chromsomes in clutter, we are interested in their use as part of a technique for bent and
overlapping chromosomes (see section 4).
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3.3 Window Centring.

Initially, the activation map sets the input state of the associative network employed in
centring. The output state of the network passes directly as input to a single-layer, super-
vised network of the type described in section 2. In this case each unit in the supervised
network is responsible for signalling the presence of a chromosome's central region within
a particular window. The network works in tandem with a second supervised network tak-
ing input directly from the image portions. This second network tries to ensure that the
new centre for the window set suggested by the first is actually on chromosomal material
rather than just to one side. Attempts are made to locate chromosome centres on new
images by repeatedly cycling through the Kohonen, associative and supervised networks
until a stable position is found (see figure 3). Each time the window set is moved a new
activation map is produced, and fed on to the associative network.

3.4 Classification.

When centring has been achieved the current activation map statte forms the input to the
associative network associated with classification. The network output state is passed on
as input to a "semi-supervised" Kohonen network for classification. By semi-supervised
we mean that for each presented input we specify which row we would like the most
responsive unit in the network to belong to. The specification is based upon the length of
the chromosome within the window set. The network is 6x6 units. (We require classifica-
tion into one of six lengths at this resolution). During training the network self-orgainsed
such that the locations of the responses within a row became ordered with respect to chro-
mosome orientation.

4. Discussion.

Our system is capable of making good estimates of chromosome position, length and ori-
entation from low resolution images of chromosomes provided chromosomes are reasona-
bly straight. This applies in the presence of clutter. However, cells examined for structural
aberrations usually contain at least some bent chromosomes, and possibly overlaps. We
are currently addressing the problems of overlapping and bent chromosomes. We are
investigating a technique which prevents features from appearing in the output of an asso-
ciative network unless they are "similar enough" to the features extracted directly from the
image. The similarity measure is a distance on the Kohonen map, and increases over time.
Also, we are looking at ways of suppressing appropriate image features once one classifi-
cation of an overlap has been performed in order that a second classification may be made.

We intend to apply the centring and classification system described here to higher res-
olution images. The appearance of chromosomal objects at such resolutions would be con-
strained by the estimates of position, size and orientation obtained at the low resolution.
We would expect a Kohonen network to extract features associated with structurally aber-
rant chromosomes, such as gaps and breaks.
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