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Abstract

We extend the principle of phase-based techniques for measuring optical
flow and binocular disparity to multiple motion estimation. We analyse
multiple optical flows by estimating phase gradients (instantaneous fre-
quencies) from a set of independent bandpass quadrature filter pairs. Our
approach is similar to that of Shizawa and Mase [22], in which nth-order
differential operators are required to compute n simultaneous velocity es-
timates. The approach presented here only requires a set of band-pass
filters and their first derivatives.

1 Introduction

Within motion analysis, there are two distinct points of view. There are tech-
niques that detect and track edge or corner features over time (e.g [4]), and those
that compute explicit measurements from the image intensity pattern. Edge-
based approaches must typically deal with the aperture problem, while corner
based approaches generally provide sparse measurements. For intensity-based
approaches this only becomes a problem where the image intensity function has
a one-dimensional structure.

Intensity-based approaches can themselves be subdivided into three differ-
ent groups. Spatio-temporal energy models[1] compute image velocity from the
relative amplitudes of the outputs of different band-pass filters. This approach,
however, does not perform well when all of the power of the signal lies in the
passband of a single filter. There are differential techniques that measure veloc-
ity from spatiotemporal derivatives of intensity of band-pass filter outputs (e.g.
[23]). However, these techniques can be sensitive to noise, geometric deforma-
tions between frames, and photometric variations as they assume conservation
of image intensity, or its filtered representation [6].

The approach taken here is phase-based [13, 16]. Measurements are based
on a representation of the signal structure provided by a family of quadrature-
pair bandpass filters. The convolution of an image with a linear bandpass
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operator is given by
R(x, t) = I(x, t) * K(x, t) = p(x, t) exp[id(x, )] (1)

where K(x,t) is a complex-values bandpass kernel, and p(x,t) and ¢(x, t)
are the amplitude and phase components of the bandpass response. We are
assuming that the filters are effectively quadrature pairs and can be expressed
as the product of a lowpass envelope and a complex exponential, for example,
Gabor filters.

Interestingly, differentiation of the above equation provides two independent
equations that can in principle be applied to solve the aperture problem in a
local frequency domain model. It should be noted that similar envelope/phase
properties are also obtained from differential operators, but the traditional
representation of these filter kernels does not pay attention to the bandpass
signal. We first consider the motion constraint equation[11] applied to the

bandpass signal, assuming E%ﬁl =:0;
explid(x,t)] [(pz + idzp)v1 + (py + idyp)va + (Pt + idsp)] = 0 (2)

where subscripts refer to the direction of partial differentiation with respect to
the coordinate frame. This gives two equations:

dln R(x,1
Im_dtLHl =¢sv1+dyv2+ ¢ =0 ™
RedBB(x) _pu, By, 2 ™
dt P P P

resulting in the following velocity measurement for single motion flow:

[2]=[% &1 [#] o

providing that the phase and energy derivatives are independent.

The recognition that the human visual system is capable of separately
analysing several independent motions at the same point in the image domain,
has prompted some authors[20, 3] to investigate the computational rationale
behind multiple optical flow analysis. It is hoped that algorithms suitable
for measuring multiple image velocities in a single image neighbourhood will
be helpful in a wide variety of circumstances, including the superposition of
signals, nonlinear transparent phenomena, and several forms of occlusion. To-
wards this end, several methods have been proposed based on the superposition
of two or more translating signals (e.g. [20, 22, 3, 12]). This paper discusses a
variation on this theme, using the previous work of Shizawa and Mase[20, 22]
as a starting point. It is shown that multiple motions may be computed with-
out the need to estimate second or higher-order derivatives. The problem of
computing multiple motion is posed instead in terms of constraints on local
measures of instantaneous frequency from different band-pass filter outputs.
With a preliminary implementation we find that this method produces reliable
estimates of two simultaneous motions of superimposed signals. It also appears
to be robust with respect to multiplicative combinations of translating signals,
and differences in signal power with respect to transparent surfaces.

The occurrence of more than one legitimate image velocity in a single image
neighbourhood may be caused by one of several common phenomena:
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e specularities or mirror-like surface reflections like those off a polished
floor;

e shadows under diffuse lighting conditions that are seen to move across a
stationary surface;

o occlusion such as a single occluding boundary or the fragmented occlusion
caused by natural vegetation or certain fences;

¢ translucency, in which light reflected from one surface is passed through
another to the camera, such as stained (or dirty) glass;

e and atmospheric phenomena such as smoke, rain or snow.

In just the past few years several methods that address the problem of multiple
image velocities have emerged. For example, some methods compute velocity
histograms in relatively local regions of the image [9, 12]. Similarly, Fleet and
Jepson[7] showed that local phase information can be used to compute multiple
estimates of the normal component of 2-d velocity. However, these techniques
do not address the segmentation of the different local measurements to com-
pute separate 2-d velocity estimates. Langley and Fleet[17] have argued that
the independence of phase and energy velocity does provide a basis to explain
transparent motion to simple signals in human vision. They also noted that the
group (energy) velocity of the image signal is not constrained to pass through
the origin of the frequency domain, which is one of the properties of multiplica-
tive motion transparency. Bergen et al[3], have derived an iterative method
that initially locks onto the one of the motions, allowing it to be cancelled by
substrating a deformed version of one frame from another. The same opera-
tions can then be applied to the resulting sequence to detect other motions that
might exist. However, only Shizawa and Mase[20, 22] have attempted to ob-
tain explicit constraint equations for the analysis of multiple flows from image
sequences. Their approach requires that second or higher order derivatives be
extracted in space and time, and averaged throughout local apertures in order
to estimate the parameters of motion. In order to compute n image velocities
simultaneously requires the application of n**-order differential operators.

By contrast, we recast the multiple-flow motion constraint equation in terms
of a constraint on instantaneous frequencies of the signals. This as an extension
to phase-based methods for measuring image velocity and binocular disparity
from the output of band-pass filters [13, 16]. We use the phase gradient, to give
a measure of the instantaneous frequency of the filter response as a function
of space and time. Instantaneous frequency may be computed from the filter
outputs directly, without explicitly representing the phase signal. In addition,
we note that the specific form of band-pass filters is not crucial to the approach.
Moreover, there exist recent results concerning the general stability of phase
information, as well as its potential instabilities, that we may exploit to use
instantaneous frequency in a reliable manner [13, 6].

2 Background Theory

With respect to motion transparency, much of the groundwork has already been
covered by Shizawa and Mase[20, 22] in terms of understanding the necessary
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constraints that are required to derive several motions from an image intensity
function. Langley and Atherton[14, 15] use a related model to detect corners
in images.

The results of Shizawa and Mase[20, 22] are based on the superposition of
two translating signals. In this case, not only does the motion constraint equa-
tion apply to each of the component signals, but there is a combined constraint
that applies to their superposition. For example, let f(x, t) be the sum of
two translating signals, fi(x, t) and fa(x, t), with velocities v4 = (u1, v1) and
vy = (u2, v2). Individually, the signals satisfy the motion constraint equations:

(VJ') 1)‘v.fj(x: t) L ﬂa 3: 1:21 (6)
where V = [%, a%‘ %] Their superposition f(x, t) then satisfies:!

((v1,1)- V) ((va, 1)-V) f(x, ) = 0, (7

where (v, 1) -V = [uZ, v%, £]. When (7) is expanded, the individual terms
are found to be :

Uy Uy fzz + V102 fyy + (w1v3 + uav1) fzy + (uy + Uu3) fzt +
(v1 +v2)fyr + fre = 0. (8)
Using differential measurements of f(x, t) at five points Shizawa and Mase [21]
describe how to compute the individual 2-d velocities. The fitting of three

velocity planes through the origin of the frequency domain is a direct extension
of this formalism to include higher-order differential operators.

3 Constraints on Instantaneous Frequency

It is well-known that the translation of a 2-d pattern has all its power concen-
trated on a plane in the frequency domain [5]; that is, the Fourier transform of
(6) satisfies:

filk, w) = A(k)6(v; -k+w), (9)

where k and w are spatial and temporal frequency variables, §(-) is a Dirac delta

function, and h(k) represents the 2-d Fourier transform of the 2-d pattern that
is translating. The velocity constraint in (9) is:

vi-k+w = 0, (10)

which also follows from the Fourier transform of (6).

In these terms, finding a solution to (8) for the two velocities amounts
to simultaneously fitting two planes to the power of f(x, t) in the frequency
domain. Towards this end, note that the Fourier transform of (8) is given by:

U Usg kff(k, w) + v vy k;f(k, w) + 1(uyvy + ugvy) klsz(k, w) + (11)
i(ug +up) biw f(k, w) + i(vy 4 v2) kbaw f(k, w) + iw?f(k,w) = 0.

LThis derivation assumes more than the conservation of fi and fa, as would be required
by (6) alone. In (7), because of the cascaded differentiation, it is important that the two
velocities V; and V3 be constant as a functions of space and time.
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If we factor out if(k, w) from (12), we are left with the constraint:

urug, k? + v1v; k% + (u1v2 + uavy)kiks + (uy + uz)krw +
(v + va)kaw +w? = 0. (12)

In effect, (12) constrains the locations of nonzero power in the frequency domain
(k, w) to lie on one of two planes.

Following from equation (3) in the signal domain and noting that the ex-
pectation of phase derivatives (instantaneous frequency) under certain circum-
stances relate to Fourier frequencies[18], we are assuming that a number of
independent measurements can be obtained from bandpass filters:

dln R ;
Im| :t ] = (¢peus + pyvi + ¢¢) =0 fori=1,2. (13)
when combined for two flows gives:
(‘!‘Szul T ¢yvl ¥ Gét)(qbzu? + ¢y”2 T Qst) =0 (14}

such that each bandpass filter selectively responds to an individual component
of the multiple flow field. Independent measurements are possible by using
filters tuned to different scales and orientation. The assumption that individual
filters are individually selective to components of the image velocity is not
without problems. For example, when transparent image sequences are defined
within the passband of an individual filter kernel, reliable discrimination cannot
be expected. Further, marked differences in the signal power of transparent
sequences may also restrict velocity estimates to the dominant signal using the
approach presented here.

Our approach to solving for the two velocities involves finding a solution
to the coefficients in (12) that contain the components of v; and v;. We then
compute the individual velocities from these terms. For convenience, we rewrite
(12) directly in vector form as:

a’Tm = o0, (15)

wherem = (42, ¢2, ¢z by, b1, by be, 7)7, and a = (uyuz, v1v2, W1v2+uzvy, Uy
ug, v1 + vz, 1)T. At least 5 independent measurements of instantaneous fre-
quency (at which there is significant power) are required to solve for the five
unknown elements of a. Given six or more measurements of instantaneous fre-
quency we have an overconstrained system, and can solve for the elements of a
more robustly. We do this by minimizing the squared error between the model
and the instantaneous frequencies; that is, we minimize

Y (a"m,)? (16)

with respect to a. Differentiating (16) with respect to a, and setting the result
to zero produces the linear normal equations:

Ma = 0, where M = Zrn,m? (17)
J
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Equation (17) constrains a to lie in the null space of M, the matrix of outer
products. Ideally, in the case of two motions, M has a rank of 5, with a 5-
dimensional column space and a 1-dimensional null space. Following Barman
et al[2] the goodness of fit of the model may be determined by ordering the
eigenvalues of M (A1 > Az... > Ag) and comparing the ratio of -)-"r"l to unity.
Note if M has a rank of 3 or 4, the flow fields are ambiguous and cannot be
individually determined. The null space is spanned by the eigenvector corre-
sponding to the zero eigenvalue. Therefore, to solve for the elements of a, we
compute the smallest eigenvalue of M (which should be zero for two motions),
and its corresponding eigenvector. We then scale the eigenvector so that its
last element is unity, which produces our least squares estimate of a.

From the elements of a, as described in [21], the individual velocities are
found as follows: For convenience, let the computed elements of a be denoted
a;j, 3 =1,...,5. Then, the two components of velocity are given by solutions to:

1 /1 1 /1
u; = Ea.tzl: Zai—al, v = §a5i Za%_ag. (18)

The correct combinations of these roots to one another to obtain estimates of
vy and v, are then determined by a3. In particular, note that their are only two
ways to combine the different estimates of velocity in the = and y directions.
Only one of these two will equal the third component of a.

4 Computing Instantaneous Frequency

In order to compute various measurements of instantaneous frequency, we as-
sume that a family of band-pass filters, such as those used by Heeger, or Fleet
and Jepson [10, 5], are applied to the image sequence. If the tuning of the
filters is sufficiently different, we can assume that the frequency measurements
represent independent degrees of freedom of instantaneous frequency measure-
ments.

Instantaneous frequency is defined as the spatiotemporal phase gradient [8,
19] It gives a local approximation to the structure of the filter response in terms
of an amplitude-modulated, sinusoidal signal. We measure the instantaneous
frequency of the filter output R(x, t) using the identity:

Im[R*(x, t) Ra(x, t)]
|R(x, t)|2 ,

$z(x, t) = (19)
where R*(x, t) is the complex conjugate of R(x, t).

But not all phase gradients are useful in constraining the multiple motions
that may exist in the image. First, it is important that more weight be given
to those frequencies that correspond to greater amounts of local energy, given
by the amplitude of the filter output |R|. Second, it is important that the
measurements of instantaneous frequency be ignored in regions where the phase
of the filter output is overly sensitive to small variations in spatial position of
the scale of input. These are detected using the theory of phase singularities
described by Jepson and Fleet [13, 5]. They occur because of interference
between energy maxima in the power spectrum. Finally, we only expect to
be able to isolate transparent motion when there is some parameter (scale,
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orientation or speed) that can be used to distinguish the different motions. We
require at least 5 independent measurements of instantaneous frequencies from
filters that respond primarily to only one of the two motions.

5 Implementation and Results

We have completed an implementation of this approach that works for 1-d and
2-d signals. One-dimensional signals allow phase gradients to be displayed as
images, an aid to an intuitive grasp of the approach. That is we are using the
properties of the bandpass filter to discriminate the phase velocity of transpar-
ent motion fields. The details are as follows: Figure 1 shows a 1-d space-time
image of superimposed random dots moving at +18.26°; velocity is conveniently
viewed here as orientation. The energy and phase responses of the bandpass
filters are then shown. In the first case (top-right and bottom-left) the filter
responds mainly to the rightward moving stimulus. Then we show the phase
response of a filter whose tuning bisects the two stimuli. This shows some of
the distortion that occurs when applying filters that respond in part to both
patterns. For the signal in Figure 1, the mean velocity (orientation) error was
—0.327° for leftward motion, and —0.046° for rightward motion, with standard
deviations 1.63° and 1.58°.

The experiment was repeated (see Figure 2) with the same stimuli mul-
tiplicatively combined rather than superimposed. In this case, we find mean
errors of 0.398° for left and 0.053° for rightward motion with standard devia-
tions of 3.98° and 5.1°. At present, we lack an explanation for the stability of
phase information in cases of multiplicative transparency, except that the local
support of the filters appears to play a major role in separating the two sig-
nals, whether combined linearly or not. We also find that this method is stable
with respect to 66% differences in contrast between the two signals. The final
results to 1-d sequences (Figure 2) are presented to a translating and dilating
noise pattern. In particular, the phase contours from this sequence provide
some indication of the problems that arise when two independent flow fields
are defined within the neighborhood of support of individual bandpass filter
kernels.

The final example in figure 3 shows the velocity and error field in the case
of 2-d motion, with two an added random noise pattern superimposed upon
the translating tree sequence. Mean errors to both flow fields were found to be
1.2° with a standard deviation of 7.0°. A total of 16 independent Gabor filter
kernels and their derivatives were used, defined over a 20x20x20 neighborhood
of support and tuned to a frequency magnitude of 0.2 cycles per pixel.

6 Conclusion

This paper outlines a new method for computing multiple optical flows using
quadrature-pair filters and their first-order derivatives. The approach is ex-
tendable to several independent velocities by increasing the number of filters
and modifying our constraint equation. The basic approach is a variation on
the theme discussed in detail by Shizawa and Mase. But it offers a substantially
different perspective, since it requires only first-order filters, and a mechanism



Figure 1: Phase and energy contours for 1-d motion sequences (a) Left Addi-
tive transparency (b) Right Multiplicative transparency. For each image; Top
left Image intensity sequence Top right phase and Bottom left amplitude re-
sponse for a filler tuned to the motion sequence, Bottom right Phase contours
for a filter equally sensitive to both components of motion sequence.

to estimate instantaneous frequency.

There are a number of advantages in the approach that we have chosen.
In particular, our processing paradigm allows higher order (deformation, di-
lation, rotation) properties of the optic flow field to be derived from further

differentiation of the bandpass signal representation (Vﬂ(‘:;t)- =0).

However, the approach presented here still retains a number of difficulties.
The foremost problem is the ability to determine precisely when reliable mea-
surements can be obtained from bandpass filters under transparent motion.
Our preliminary results suggest that the energy derivative may play an impor-
tant role in supporting phase measurements from similar bandpass filters when
both provide similar velocity measurements.
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Figure 2: Left A 1-d motion sequence consisting of a dilating and translating
noise pattern additively combined. Phase contours are shown for a filler tuned
to the translating component and a filter tuned to zero velocity. Right Frame
15 from a noise pattern moving vertically at one pizel per frame added to a
translating iree sequence moving with a mean velocity of two pizels per frame

to the right.
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Figure 3: Left True flow field from figure 2. Right Measured flow field.




