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Abstract

The paper describes instrumentation which uses machine vision to inspect rolls
of web textile fabric in real time. This involves detection of "message" signals
arising from defects buried in noise caused by fabric structure. Analogy with the
detection of targets in radar and sonar is exploited to provide effective signal
processing. The hardware implementation achieves efficiency with economy by
using standard devices wherever possible - such as a CCD linescan camera for
sensing and a 486 PC as host processor. A special interface card is provided
which compensates for deterministic noise and eliminates more than 99% of the
redundant data gathered by the camera.

1. Introduction

Textile fabric is often corrupted by defects introduced during manufacture or
subsequent processing. It is customary therefore to inspect the fabric visually, as a
moving web; this task is boring and hence inefficient and unreliable. A human inspector
notices perhaps 60% of defects present, and copes with 2 metre wide fabric moving at
about 30 cm/ second. The performance target for the work reported in this paper is to
detect at least 95% of significant defects down to 2 square millimetres area, and to
cover fabric 2 metres wide moving at 1 metre per second. It is hoped eventually to
identify defects by type so that their causes may be ascertained and corrected. Initial
identification work aims merely to specify defects as being from one of four groups
based on superficial appearance:- along web, across web, no preferred elongation,
slubs.

Though several fabric inspection machines are already being offered commercially,
these are much too expensive for application to be widespread. The processing methods
used remain undisclosed. Hence the present work.

This paper reports on a research programme aimed at producing an automatic web
fabric inspection system whose target cost is perhaps an order of magnitude less than
for present systems. Cost effectiveness is achieved by following two strategies:-

1) Using as far as possible hardware components (sensors, processor boards and
computers) which are already available commercially and are hence inexpensive.

2) Configuring the processing as a sequence of consecutive stages, in which each
stage passes only the small fraction of incoming data likely to include defect
information and hence important enough to be delivered to the subsequent more
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expensive processing. Processing at each stage can become steadily more elaborate and
hence more powerful.

Thus, although the camera must acquire 8 million eight bit pixels each second,
only about 100 kilobytes of this (1.25 %) need reach the host computer even in the
worst case. Inexpensive, PC-type computers can thus be used as hosts; there is no need
for expensive parallel machines.

The research programme aims to produce a configuration (lighting, viewing etc), a
processing scheme, and also software algorithms to implement the processing and
report the results of the inspection.

2. Previous Work

There have been many attempts to apply machine vision to automate the inspection of
moving webs, for a wide range of materials including tinplate [1], cold rolled steel strip
[2], sand paper [3], etc in addition to textiles. Detection of defects is generally
reasonably easy, provided the defects have sufficient contrast.

Identification of the defects is much more difficult; statistical pattern recognition
has often been tried. Promising results have been reported for tinplate; [1] for example
quotes 80% correct identification for ten classes using a linear classifier, but tinplate
has a smooth and highly reflective surface. Moreover, the results are for simulation
only, in which isolated samples of digitised data from real defects were processed off-
line. Whether these results would be maintained in on-line operation is hard to judge.
Chittineni [3] reports 82% correct identification of defects on sand paper with a linear
classifier using only individual scans, which improves to 91% when tentative
assignments from successive scans are combined. This is very impressive but the work
considered only four classes of defect. Logan and MacLeod [8] reported 80% correct
identification for steel strip using linear and quadratic feature space classifiers.

When Hill [3] attempted to apply a linear feature space classifier to identify defects
in cold rolled steel strip he was able to achieve only 55% correct in his simulations
despite using a least mean square linear classifier which was very carefully designed
and thoroughly evaluated. His investigation however considered 37 classes of defect,
which were of low contrast compared with the noise arising from surface roughness
worsened by laser speckle. Hill claims reasonably that since random classification of
defects from 37 equiprobable classes would yield only 2.7% correct, the 55%
correctness he obtained is a significant success. However, the end user needed 85%.
The inevitable conclusion is that feature space pattern recognition is inappropriate for
classifying defects on a moving web unless the number of classes is small, of the order
of five. Feature space pattern classifiers are, further, tedious and expensive to design;
classification using decision trees seems more promising.

Several publications [9, 10] have appeared which describe signal processing
methodologies applicable to fabric inspection, but none provides a comprehensive and
detailed technical description of an actual system.

Some [11, 12] have used standard area cameras with associated hardware, but they
require many cameras due to their inherent low resolution, making the systems
excessively expensive and complicated. They also require either an extremely
controlled lighting environment, or a normalisation pre-processing stage to
accommodate lighting variations and unevenness.
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3. Principle of Operation

The general arrangement is indicated in figure 1. Light returned from the web is sensed
using a CCD-linescan electronic camera. The presence of a defect causes the received
signal to rise or fall momentarily, and the resultant peaks or troughs are detected by
thresholding.

The complete inspection process can be regarded as the sequence of processes
shown below:

A) The initial detection stage establishes that a defect of some kind is present.
B) The delineation stage determines the region covered by a defect; it specifies the

information which must be used to identify the defect. Delineation also supplies the
extent (length, width) and area of a defect.

C) The final stage is identification. This process is the most expensive
computationally.

We shall consider detection first. The ideal case is illustrated in figure 2; however,
the signals received in practice look like figure 3. Here, two kinds of noise are present
which tend to mask the defect indications: low frequency modulations caused mainly by
non-uniform illumination, and high frequency modulations. These latter arise partially
from variations in responsivity between the photosites in the photodetector array, and
partially from the stitch structure of the fabric. Both the illumination variations and the
photosite non-uniformity may be compensated following calibration, but the stitch
structure noise is effectively a random signal which cannot easily be removed. It is this
stitch structure which restricts a pure thresholding operation to detect only defects
whose high contrast exceeds the signal excursions due to stitch noise.

To permit low contrast defects to be detected, an analogy is used with the detection
of target signals in radar and sonar. Here the problem is to detect a message (of known
form) in the presence of noise introduced by clutter, reverberations, and thermal
motions. The detection process may be split into three consecutive stages [4], as shown
in figure 4. Stage 2, the fundamental decision process implicit in message detection,
comprises the thresholding illustrated in figure 5. The incoming signal is analogue but
the output is binary; a considerable quantity of data is discarded at this point. Its success
can be improved by enhancing the contrast of defects with respect to noise prior to
thresholding (stage 1). Stage 1 is most commonly implemented with a matched filter
[4], but there are many other possibilities such as the textural filters described in [8].
The form of the message signals generated by defects is very variable, and two
dimensional filters may be needed. In certain circumstances, the signal is a vector, and
linear transformations may be used to enhance contrast [4].

Stage 3 exploits the property that the false alarm triggers generated by random
noise are spaced uniformly and at random over the surface being examined, whereas
those due to defects form compact clusters. The map of triggers resulting from stage 2
is therefore scanned and isolated triggers are removed. The trigger clusters which
remain are almost invariably due to defects. Many alternative schemes are available for
eliminating noise triggers; they differ in efficiency, convenience and in the corruption
they cause to genuine defects. Some of these are compared using mathematical analysis
in [7], which demonstrates how effective they are quantitatively.
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4. Static Experiments

These used a purpose built system, capturing 512*319*8bit images and storing them to
disc for subsequent processing. Back lighting was initially used, but due to the open
structure of the fabric, an excessive number of noise triggers is generated by the
detector. Front lighting was then tried, and although the defect signal amplitude was
reduced, its contrast relative to the fabric structure noise was very much improved.

An adaptive threshold (figure 5) is used which compensates for uneven
illumination on a pixel by pixel basis, with positive and negative thresholds to detect
light and dark defects respectively. Selection of the threshold parameters is automatic,
partly due to the wide variations in thresholding requirements of even very similar
fabrics, and partly to avoid error prone operator intervention. It involves quantifying the
spread of noise in the image, which is Gaussian (Figures 6a and 6b), and calculating the
threshold parameters from the equations:-

Tupp« = H + to and Tlower = \i-ko,

where k is a constant between 2 and 5. Altering k alters the sensitivity of the detector,
as shown in Table 1.

Table 1. Triggers Generated With Varying Detector Sensitivity
k
5
4
3
2

P(*)
0.0000006
0.000064
0.0027
0.0454

Quantity of triggers predicted
0.1
10

441
7415

Quantity of triggers counted
0-10
30-50

500-1000
5000-12000

Selection of the optimum value for the threshold in terms of the noise variance
(specified by k) is vital to ensure that subsequent stages of noise trigger elimination and
defect delineation are effective. It was found that setting the thresholds 4 standard
deviations from the mean produced optimal results.

Figure 6a shows the PDF for a region of fabric which is defect free, figure 6b
shows the PDF for a region containing a defect. The defect is manifest to the left of the
main distribution. This high contrast is typical of fabric defects.

The delineation process then aims to associate triggers arising from the same defect
using tests of local adjacency. Initial results using static boundary spatial distance
measures are good, correctly clustering all the triggers arising due to a defect with the
local triggers arising from fabric structure distortions around the defect. Triggers due to
noise are clustered individually in small, localised groups. Needle lines and horizontal
defects, which tend to be broken into many smaller clusters by the detector, have their
component parts clustered together correctly (Figure 6c). It is envisaged that better
results will be obtained by dynamically modifying the adjacency model according to a
predetermined plan, biasing it either horizontally or vertically. Research into the use of
an optimal estimation filter to implement this is underway.

As the delineation stage works on edge (transition) information only, it is very fast
and highly memory efficient, processing many thousands of clusters per second and
using around 40 bytes of memory per active cluster.

Placing a size threshold and trigger density threshold on each cluster provides a
test for distinguishing a cluster arising from a defect or from noise. The clusters
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identified as defects are then subjected to a 2 dimensional linear feature space
classification system that assigns a cluster to a group based on information obtained
from the delineation stage. The catchment rectangle shape factor and cluster size are
used to classify a cluster into one of the following classes:-

Horizontal, Vertical, Local, Slubs. (Slubs are essentially horizontal, but have
peculiarities that enable a separate classification to horizontal defects.)

A number of images containing various defects from a range of greige fabrics have
been subjected to the processing strategy outlined above. In each case all the defects
present were correctly detected, delineated and classified, with no false alarm signals
being generated. It was found that fabrics with wider stitch spacing resulted in more
triggers arising due to noise being present in the signal, but these were very
satisfactorily dealt with by the delineation scheme.

5. Experimental Online System

The system used for initial experiments on a moving web (rather than on isolated
samples) is based on a commercially available manual tubular fabric inspection
machine. The front side only of the web is viewed by a 2048 element linescan camera
with the array axis across the fabric perpendicular to the direction of movement. This
gives a resolution of 0.5mm across the lm web. Lighting (figure 1) is provided by a
fluorescent tube operating at 35kHz to avoid flicker. The tube is about 25mm away
from the fabric; a simple mask with a slit for the camera field of view shields the lens
from direct light. Because only the centre portion of the fabric is illuminated only the
centre 0.5m width is inspected although the whole width is scanned. The camera is
focussed below the tube and perpendicular to the surface; a dark strip is placed under
the fabric to maximise the contrast of hole-like defects (since the greige fabric being
inspected is light coloured).

The initial system comprised a Fairchild CAM1500R linescan camera, Sentel
CCU-M frame store and linescan interface board installed in a 33Mhz 386 AT
compatible computer, and a standard Sheltons Tubular Inspection Machine (TIM). A
relay driver was incorporated to stop the machine when a defect was found, for
evaluation purposes. The set-up was good enough to perform useful inspection, albeit at
a slow speed of 5cm/second. The interface board performed no processing, passing the
digitised grey scale data to the host computer.

The final system uses a board designed in-house that performs not only the
thresholding operation, but binary filtering and data compression as well. The binary
filtering examines two adjacent trigger pixels, and outputs a signal based on the rules
shown in Table 2.

Table 2. Binary Filter Qperati ng Rules
Input

00
01 or 10

11

Output
0

No change
1

Because of the good noise reduction properties of this filter, the thresholds can be set
closer to the signal mean, 3 standard deviations away as opposed to 4 without the filter,
thus detecting lower contrast defects. An advantage of using lower thresholds is that
more defect information is produced (Table 3). Also, the filter is not destructive to
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clusters that arise due to a genuine defect (as these are compact), but only to noise
triggers which are spread randomly throughout the image. Figure 7a shows the result of
using 3 standard deviations for thresholding an image, and figure 7b shows the result of
filtering with the binary filter.

Table 3. Comparison of Results With and Without Binary Filter
Binary

filtered?
X
•
X
•

Threshold

3SD
3SD
4SD
4SD

Triggers

633
394
272
NA

Individual
clusters

143
16
16

Not
applicable

Associated
clusters

6
1
1

Not
applicable

Table 3 shows that the defect is correctly delineated using 4 SD's with no binary
filtering, and also when using 3 SD's with binary filtering (figure 7c). However, the
latter approach retains 45% more information, 394 pixels as opposed to 272, giving a
more accurate delineation and classification.

The signal processing methodology described above was successfully implemented
into the online system using the following sequence of operations:
do

grab line of data
threshold data
perform binary filtering
delineate any clusters present
if cluster complete

if cluster is due to defect
classify defect
output results, or stop machine

while not end of roll
As in the static trials, all defects present were detected. A few false alarm clusters

were however generated.

6. Hardware

To achieve the objective of low cost, a commercially available line scan processor
board was used originally that was specifically designed for high speed adaptive
thresholding. This board could not realise our full operational requirement of 2000
lines/second for a number of reasons, and to achieve the target operating speed a special
interface card has been constructed. Its functions are as follows:-
[a] To allow the system to accept and synchronise with exposure and readout pulses
generated by the camera, and to receive and condition the video pulses received from
the camera.
[b] To correct for deterministic noise corruptions in real time. Individual correction
must be provided for each pixel.
[c] To perform the thresholding operation fundamental to defect detection.
[d] To examine the triggers generated by operation [c] and reject as many as possible
which have arisen from random noise.
[f] To transition encode the trigger signals selected as being most likely to indicate



223

defects with their locations over to the PC host, along with certain other information,
such as end and edge of web.

Operation [a] is made difficult because there is no standard interface for linescan
sensors as there is for two dimensional cameras, and so the interface used in the
prototype stage is specific to the IPL linescan camera. Each pixel in the camera signal is
digitised to 8 bits and then compared with stored upper and lower threshold values
specific to that pixel. This combines thresholding and correction for deterministic noise
in one operation. Only those pixels whose values lie outside the thresholding band are
retained as potential defects. Some of these are noise pixels arising from the fabric
structure, but because they are isolated most can be removed by the simple non-linear
binary filter explained previously. It is necessary to choose a form for this filter which
is both effective and easy to implement in hardware.

The defect data and end-of-line markers transferred to the computer are further
reduced by transition encoding; the four possibilities, transition to light defect,
transition to dark defect, end of defect and end of camera scan line are distinguished by
two data type bits. These bits together with the pixel address of the transition are passed
to the FIFO's for writing by DMA transfer to a circular buffer in the computer.

The development system uses an IPL 5000 series 2048 element line scan camera
driven by the camera internal clock; the master clock, exposure strobe and combined
video signals are passed to the interface. The exposure pulse is extended to cover the
dark reference camera pixels and is used to clamp the video signal and to control the
timing. In normal operation the camera scans continuously passing only the essential
data to the computer buffer via the FIFO's. The data is processed asynchronously but
must be removed from the 64kbyte buffer fast enough to avoid buffer overflow; the
processing time increases with the number of the defects present at any given time.

At the start of a fabric roll a number of lines of camera data are read and averaged
to provide a relatively noise-free reference line of data. Thresholds for each individual
pixel are then computed and written to the threshold RAM's to initiate defect detection.
The threshold values reflect changes of pixel sensitivity, uneven light transfer through
the lens and non-uniformity in the lighting so that the effects of these anomalies are
effectively eliminated. During the inspection process new pixel data is periodically read
from the camera and used to update the reference line and the thresholds so that slow
changes in lighting and temperature drifts are countered.

All data transfers are 8-bit in the prototype interface which appears as four 8-bit
I/O ports and an 8-bit DMA channel to the computer; the 16-bit DMA data needs two
8-bit transfers accessing the FIFO's alternately. A hardware line counter, read as two
bytes from separate ports, is provided but its main use has been checking that the
number of line markers counted is correct. The prototype is of wirewrapped
construction and is based on a standard prototyping card on which buffering and initial
decoding are already provided; programmable logic is used for many of the decoding,
status and control functions. A 16-bit version is now being developed to improve the
data transfer rates. This version will use a pcb and will make extensive use of
programmable logic both to reduce the chip count and to simplify modification for
different camera parameters.

7. Concluding Remarks

The system has recently been shown in the laboratory to detect all significant defects on
greige fabric 1 metre wide moving at 1 metre/second. Doubling of the resolution to
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enable full width (2 metre) fabric to be inspected to the same specification awaits
completion of the updated interface card. Further work is however required, to extend
system capability to identify defects by type, to cover patterned and multicoloured
material, and to examine "difficult" fabrics such as denim which is dense, dark and has
unusual defect types such as loose threads.

Stage (1) of the defect signal enhancement sequence has not as yet been utilised.
The analogue processing required is more difficult to implement than the purely digital
processing which seems to have been adequate so far. Analogue contrast enhancement
may well have to be incorporated to cope with more difficult fabrics.
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