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Abstract
This paper presents a theoretical basis for a set of optimal filters for the
reconstruction of piecewise-continuous one-dimensional signals, drawing
from Bayesian networks and Kalman filters. Results are presented for
synthetic and real data, using both the optimal filters and a sub-optimal
implementation. The results compare well with linear space invariant
filtering or facet fitting approaches, and present a basis for the design of
image restoration algorithms.

1 Introduction
This paper addresses the problem of reconstructing a piecewise continuous sig-
nal which has been corrupted by noise. This is poorly handled by linear space
invariant (LSI) filters as the signal spectrum around a discontinuity is different
from the spectrum of a continuous portion of signal. This has led researchers
to explore the use of non-linear or adaptive filters.

The approach taken is to derive a particular class of optimal adaptive filters
for one-dimensional signals, based on the theory of Bayesian networks [1] and
Kalman filters [2, 3]. The signal models on which the optimal filters are based
can correspond either to facet-fitting models or deformable membrane models,
depending on the choice of parameters. It is recognised that these optimal
filters will not be tractable for the ultimate goal of image restoration, so we
also investigate the use of a sub-optimal algorithm. We apply optimal and
sub-optimal algorithms, using different signal models, to both synthetic and
real one-dimensional data; the results in several cases show improvements over
traditional facet-fitting or LSI filtering techniques.

This approach brings the power of Bayesian theory to a stage where that
theory can be applied to some more concrete problems in an efficient manner.
That was the aim in carrying out this work and we see it as one of the important
contributions of this paper.

2 Bayes' Rule and Sensors
The purpose of sensing is to combine information from observations with prior
knowledge of the state of some external object in order to obtain more accurate
posterior knowledge. We denote tin? state we wish to determine by a variable
ft and the observation set by o\ the prior knowledge is written probabilistically
as a distribution p(h) and the posterior knowledge as a conditional distribu-
tion p(h\o). Furthermore we describe the sensor in probabilistic terms by the

BMVC 1992 doi:10.5244/C.6.20



188

conditional distribution p(o\h) and the prior knowledge of the observations by
p{o); we can then apply Bayes' rule [4]:

In many practical applications we may only wish to find the most likely value of
h for a particular observation set o; in these cases we may ignore the (constant)
denominator and merely maximise the numerator on the RHS of equation (1).
This is the approach taken in this paper.

In order to make the sensor model tractable it is useful to be able to separate
the individual members o, of the observation set o. This can be done if the
individual observations can be said to be conditionally independent, conditioned
upon h [1]. We can then write:

n

p[oi...on\h)=Y[p(oi\h) (2)
i=i

A particularly simple and common example of this is where the o, are a sequence
of measurements of a constant value h; typically the arithmetic average of these
measurements would be taken as the most likely estimate.

3 Recursive Probabilistic Signal Models

In order to make maximum use of the conditional independence assumption,
this paper develops recursive probabilistic models for discrete ID signals. The
assumptions that underlie these models are:

1. signal values are corrupted independently by the sensor;

2. the original, uncorrupted values depend only on their direct neighbours'
values (Markov assumption).

If we interpret these assumptions in probabilistic terms, then for each discrete
value hi of the uncorrupted signal, we have a single observation o, and the
following distribution functions:

• a prior p(/i,;);

• a sensor noise model p(oj|h,-);

• and a markovian signal model p(/ij_i|fti), p(/i;+i|/ii).

The datasets o,, Oj<, and Ok>i are assumed to be conditionally independent,
conditioned on />,:, so that:

/),;) (3)

where each of the last two terms can be expanded recursively as:

P(oj<i\hi)= <f> p(oj<i-i\hi_i)p(oi_i\hi_i)p(hi_1\hi)dhi_i (4)

Here the first term in the integral is the same expression as the LHS, evaluated
at step i — 1, the second term is the sensor model at step i — 1; these two are
combined and then the results carried forward to step i via the third term in
the integral.
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Figure 1: Kalman filter block diagram; u is the system noise, w is the obser-
vation noise.

4 The Kalman Filter

It has been shown ([5], chapter 3) that the Kalman filter [2, 3] is a special case of
the class of filter formulated in the previous section, where all the distribution
functions are assumed to be Gaussian and the signal can be described by linear
state-space equations. Here we will show where the equivalence lies without
making a formal proof.

In its usual formulation the discrete Kalman filter step consists of two
phases. In the prediction phase data up to step a' — 1, in the form of a state
estimate vector x(i — l\i — 1) and a mean squared error (MSE) estimate matrix
P(i—1|?'-1), are used to obtain estimates of the state and MSE at the next step
i from a state transition matrix F(«) and a system noise matrix U(?'); the new
state estimate is used to obtain an estimate of the corresponding observation
z(i\i — 1) via the measurement matrix H(i).

x(i|i — 1) = F( i)x(i — II?' — 1) (5)

P(i\i - 1) = F{i)P(i - \ \ i - l)FT(i) + U(z) (6)

In the update phase, the new measurement vector z(i), along with its expected
MSE matrix Ft(?), are combined according to filter gain W(i) with the earlier
data to give new estimates of system state and MSE:

W(a') = P(i\i)flT(i)R~l(i) (9)
x(i\i) = x(i\i - 1) + W(») [z(i) - z(i\i - 1)] (10)

These equations are summarised in the diagram in figure 1, showing the models
of the system and sensor.

The equivalence between this formulation and the probabilistic one from
equation (4) is as follows:

• observations o, and z(/) are equivalent, as are state values /?,; and x(i);
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• the expression p(oj<j|/),) is a Gaussian distribution in /i, with mean
x(i\i — 1) and covariance matrix P(i\i — 1);

• p(oi\hi) has mean H(?')x(?) and covariance matrix R(?');

• and finally p(/);_i |/i7) has mean F(i)x(i — 1) and covariance U(f).

The prediction phase is the evaluation of p(oj<i\h,) from p{oj<i\hi_i), while
the update phase is the combination of p(Oj<^|/?;) with p(oi\hi) to obtain
p(oj<i+i\hi).

In order to apply this model to the reconstruction of continuous signals,
where we can use later observations o^i as well as past observations flj<,,
we add a backward "prediction" phase from step ?' + 1. This corresponds to
p(°k>i\hi), also evaluated recursively, thus giving all three terms from equation
(3).

5 Piecewise Continuous Signals
In order to accommodate piecewise continuous signals we need to extend the
model. Preserving the earlier assumptions, we introduce discontinuities by
modifying the state transition relationship:

Ah^) + L ^ h ^ ) (11)p{hi-i\hi) rpAhi^i) +
Ci + 1 C,: + 1

where pc describes the distribution resulting from a continuous step as before,
Pd describes the distribution from a discontinuous step and c; denotes the odds
for the particular step being continuous.

To integrate this into the Kalman filter approach, both pc and pd must be
Gaussian distributions. In the implementations a discontinuity is simulated by
using a system noise matrix U<j with large covariance values; thus equation
(11) corresponds to splitting a single filter into two concurrent filters at each
step. As a result we need 2"~x filters for n observation points; the problem
is no longer tractable. Two different heuristics to overcome this problem are
discussed in a. later section.

The other consequence of equation (11) is that each of the filters needs to
be ranked by its posterior probability. This too can be done recursively, so
that at each step i the distributions p(oj<i\hi) and p(ojt>,-|/i,-) are represented
by a weighted sum of Gaussian distributions. The weights are calculated in the
update phase of the Kalman filter, where the Gaussian p(o;|/i,;) is combined with
the incoming predictions. This combination corresponds to the multiplication
of the distributions, which in turn corresponds to the multiplication of two
Gaussian functions (as in equation (4)). The product of two Gaussian functions
with means /Zj, /x2 and covariance matrices Ci and C2 respectively is:

where

c'-1 = c^+cj1

.,/ g-*t (r* — i.. I p - i . .
fj> — KJ I V_< i fj• i ~f~ Ks •) ^X 9

C / / /~i / / ^ —1 1 / ^ ~ 1 \ i1"1
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In this case,

• ^ . C , ^ ) = P(°j<i\hi) a n d ^n2<C2^
1^ ~ P(°i\hi)

As may be seen, the first term on the RHS of equation (12) is of the same
form as the terms on the LHS; it is a normal distribution whose parameters
are given by the Kalman filter equations ((5) to (10)). The second term on the
RHS of equation (12) is a Normal distribution in the difference of the means of
the two terms on the LHS; the value of this term is used to rank the individual
Gaussian functions that make up p{oj<i\hi) and p(ok>i\hi).

Thus the posterior likelihood assigned to each individual Kalman filter is a
combination of the prior likelihoods c, for each step being continuous and the
results from equation (12), which is a hypothesis test between p(oj<,-|A,-) and
p(oi\hi).

We can also make use of the hypothesis test to determine the probability of
discontinuities. We denote the state of a link from step i — 1 to step i by the
symbol /,, taking the value 0 for a discontinuity and the value 1 for a continuous
step. Then we can evaluate:

p(o\k)= I p(oj<i|/)7:,/,:)^(o,|/ii)p(oi:>,:|/ii)rf/)i (13)
Jh,

which, combined with the prior odds c,;, allows us to calculate the posterior
odds for /;.

6 Algorithms for Reconstruction
The results in this paper were obtained from two different algorithms:

1. a near-optimal algorithm which carries forward all the ranked hypotheses
as per equation (11), pruning only those whose likelihood is less than
10~3 times the most likely;

2. a sub-optimal algorithm which locally labels each step as continuous or
discontinuous and only carries forward the currently-labelled hypothesis.

The second algorithm is a decentralised version of the Highest Confidence First
(HCF) algorithm described in [6]. The HCF algorithm makes a single, globally
most promising decision at each iteration. The algorithm used here, which
could be called Local Highest Confidence First (LHCF) [7], finds the most
promising decision over each neighbourhood and takes each of these locally
maximal decisions at each step. It might be expected that the performance of
the LHCF approach will deteriorate in cases where the decisions made locally
have a more global effect.

Four different signal models were used:

• piecewise constant:
F(i) = [1] , Ue(i) = [0] , U d (0 = [trj]

• piecewise constant with system noise (piecewise almost constant):
F(») = [1] , Uc(i) = K2] , Vd(i) = [**]
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Figure 2: Step size 1.5 in noise a — 0.707; (a) piecewise constant, near-optimal
algorithm; (b) piecewise constant, LHCF algorithm; (c) piecewise almost con-
stant, near-optimal algorithm, (d) piecewise almost constant, LHCF algorithm

• piecewise linear:

F ( O = [ J ; ] , u e ( . - ) =
• piecewise almost linear:

F(i) = f J | 1 , Uc(i) =

0 0
0 0

0
'2c
2 , Ud(i) =

'2d

"id
0 •id

7 Experimental Results

We have prepared synthetic data to illustrate the performance of the algorithms
and the models with well-controlled inputs. In each case, piecewise-constant or
piecewise-linear data was corrupted by additive Gaussian noise and the results
processed by the algorithms.

In order to obtain a more realistic assessment of the performance of this
approach, we generated ID datasets from slices through real images. In these
cases the actual parameters of the image and noise are not known exactly and
have been estimated from plots of the data.

Figure 2 shows the effect of applying the two order zero models to a signal
containing a step in noise. The corrupted signal is shown by the dashed line
while the reconstructed signal is shown by the solid line. The near-optimal
algorithm shows reasonable competence with both models, while the LHCF
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Figure 3: Roof function in noise; (a) piecewise linear, near-optimal algorithm;
(b) piecewise linear, LHCF algorithm; (c) piecewise almost linear, near-optimal
algorithm, (d) piecewise almost linear, LHCF algorithm

algorithm only performs well with the less rigid signal model; this is as we might
expect, since the rigid signal model makes local decisions extremely error-prone.
The near-optimal algorithm, using the more rigid model, was able to detect a
step size of 1.0 in the same noise.

Figure 3 shows the effect of applying the two first-order models to a roof
signal in noise. Once again the near-optimal algorithm shows reasonable com-
petence for both models. The LHCF algorithm appears quite competent with
the rigid model, while with the flexible model it fails to detect the discontinuity;
however, its competence with the rigid model is likely to derive from the fact
that there is only one discontinuity in the dataset.

Finally, figure 4 shows the result of applying the two flexible models to
a slice through a real image. As expected the near-optimal algorithm shows
better competence than the LHCF one, though the differences are minimal,
particularly with the lower pair of plots. The data clearly would not fit either of
the rigid models shown in the earlier results. Note also that the discontinuities
in the data are not sharp, as per the signal model, but blurred by some form
of point spread function.

The results shown here should be compared with either facet-fitting or LSI
filtering techniques.

From the results of applying the rigid (facet-like) models to the simulated
data, we can see some reasons for the problems encountered with the use of
parametric patches to segment images. While the near-optimal algorithm is
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Figure 4: Real data; (a) piecewise almost constant, near-optimal algorithm;
(b) piecewise almost constant, LHCF algorithm; (c) piecewise almost linear,
near-optimal algorithm, (d) piecewise almost linear, LHCF algorithm

successful in fitting such patches, the sub-optimal algorithm exhibits the frag-
mentation which is often observed. This is likely to be an unavoidable problem
with such models because of the strong dependencies between non-local seg-
mentation decisions. In cases where the optimal approach is not desirable or
tractable, sophisticated algorithms will be required to obtain reasonable results.

The flexible models used here provide the closest comparisons with LSI
filtering techniques; in fact where there are no edges the sub-optimal filter is
equivalent to optimal LSI filtering. Figure 5 shows the application of a standard
LSI filter and the corresponding LHCF filter to a step in noise. The use of LSI
filters for piecewise continuous data is inevitably a compromise, as outlined in
the introduction. Thus while these filters may provide either sharp boundaries
or smooth surfaces in between, they cannot provide both simultaneously. The
filtering technique developed here is capable of providing them both; where the
underlying signal model is sufficiently flexible it can provide these relatively
efficiently.

8 Further Work

The task of reconstructing or segmenting images using Bayesian theory has
been tackled by several researchers in the past [8, 9, 10]. In many cases the
results have proved to be unwieldy.

It is clear that the recursive algorithms and models presented in this paper
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Figure 5: Comparison between LSI and LHCF approaches: Step size 1.0 in
noise a = 0.707; (a) piecewise almost constant, LSI filter; (b) piecewise almost
constant, LHCF algorithm

cannot be directly generalised to the processing of a 2D dataset; the condi-
tional independence assumptions required cannot be justified. However we can
show that the recursive models derived here can be expressed equivalently as
differential models, which can then be applied to 2D datasets. Though this in
itself is not a novel idea, we expect the fusion of the two approaches to provide
the inspiration and justification for a more rigorous application of differential
models to image restoration and segmentation.

We are currently applying the theory described in this paper to the com-
pletion of edge maps, as produced by an edge detector (eg [11]). These edge
maps often have gaps where the grey-level contrast, is insufficient or where the
grey-level surface does not match the edge detector's expectations (for example
at junctions). The aim is to use the Kalman filtering technique to estimate
the orientation at a terminator so the edges can be extrapolated, and to use
the hypothesis testing techniques to determine the best completion for each
terminator. This requires the application of some sophisticated search con-
trol techniques and decision-theoretical methods. Only preliminary results are
available at this time, but these appear encouraging.

9 Conclusions
We have shown how Bayesian theory can be used to design recursive filters for
one-dimensional signals. For the special case of Gaussian distribution functions
and linear state-space signal models we have shown efficient implementations
of this Bayesian theory in terms of Kalman filters, and successfully applied the
results to the reconstruction of signals corrupted by additive noise.

A requirement for a more general application of this work is the viability
of sub-optimal algorithms; we have compared the performance of one such
algorithm with the performance of the optimal filter, showing that in many
cases the results are comparable.

The approach described in this paper is currently being applied to a range
of problems. Some difficulties still remain:

• the choice of suitable sub-optimal algorithms for both ID and 2D appli-
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cations;

• at present the approach does not. cater for images which have been blurred
as well as corrupted with noise; it is not clear how a blurring model (point
spread function) could be integrated with the recursive approach;

• we have not investigated calibration methods; clearly we will need a more
rigorous approach to choosing parameters than the current "eyeballing"
techniques.
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