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Abstract

A new approach to indexing in model-based vision is introduced; using indexing features
whose deformed instances are present in a number of different object models. Hypotheses
are generated by matching an indexing feature with an image using a viewing
transformation incorporating the deformation; the parameter values of the deformational
component provide specific indices to those models related to the indexing feature,

1 Introduction

Given a model-based vision (MBV) system which has a number of representations of
different objects, how can it access the most appropriate model to match with a scene
given that there is no a priori knowledge of the objects within it? This is the problem of
indexing. One solution is to use indexing features, subsets of model descriptions which
are computationally less expensive to match with an image, to generate hypotheses. Two
types of indexing feature have been used; 'critical' features - features unique to specific
objects [3, 4, 5], and 'similar' features - features common to a number of objects [6, 7].
This paper advocates using deformable indexing features whereby deformed instances are
present in a number of quite different object models. As with similar features this has the
advantage of representational parsimony. Furthermore, matching a feature with an image
using a viewing transformation which has a deformational component can provide
different indices for each model related to that feature via the specific parameter values of
the deformation. This retains the specificity of the critical features approach.

The structure of this paper is as follows. The relationship between critical and similar
features is first clarified and then extended to indexing via the structural deformations of
parametrised features using anisotropic scaling. A specific implementation in the domain
of 2-D, wire-frame, drawings is then discussed and a representative example is given
which demonstrates the system's good performance.

2 Indexing by Critical and Similar Features

Traditionally, object recognition has been regarded as finding the parameters of some
viewing transformation between some known object and an image description e.g. [1, 2].

Let I' be an image description and M be an object model description, both being
comprised of a set of geometrical primitives i.e. I = {piy, pia, ..., pif}, and M = (pmy,
pmy, ..., pms) where pi; and pmy are the jth and kth image and model primitives
respectively. Object recognition is then characterised by the relation:
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M XTI 2C = ((pij, pmy) : T(pij) = pmy} (1)

C is a correspondence between M and I; it is a non-empty subset of their Cartesian
Product. T is a geometrical transformation which superimposes a model primitive onto an
image primitive. Thus, C is a relation between the two representations such that elements
from M and I are related only if they are geometrically compatible with each other under
some common viewing transformation. The parameters of T must be similar for every
element of C so that each pair mutually supports and constrains the solution spaces of
every other pair. Though suitable for the 'bin-of-parts' scenario it presents problems
when there is a database of models D = (M;,Mj,...}. If there is no a priori knowledge of
what object is present in a scene then one must exhaustively search across D; looking for
the model which gives the best measure of fit. This is a major problem for MBV.

Two different types of model-driven indexing schemes have been suggested to reduce
this search space. Both use indexing features which are related to particular models but
which are simpler structures than the models themselves. They are generally used in
hypothesis-verification schemes where a good match with a feature constitutes a good
hypothesis which must be verified by a full model match. Such a feature match is less
computationally expensive to match with the image than the full model description. The
cost of hypothesis verification will also be reduced due to the information provided by the
parameters of the viewing transformation of the hypothesis.

The first uses critically distinguishing features for each different object class i.e. there
is a subset of each model description which is unique to it e.g. [3, 4, 5]. This gives a set
of indexing features F = (f},fy,...} where My 2D fyand VM e D,i=k, M;N T(fy) =
@ and T is usually a rigid or a similarity transformation.

The second method uses 'similar' indexing features; features common to a number of
object classes e.g. [6, 7]. Each similar feature is a subset of a number of different models;
it represents the shared structure between them. Thus a similar feature is a
correspondence, as defined in (1) above, but between two or more models i.e.

M; X My, 2 fx = ((pmjj, pMmy) : pmyj € M;, pmpmp € Mp, T(pm;j) = pmpma}  (2)

where pmpy, is the nth primitive of model My,. Again T acts as a normalisation process.
This can be extended to more than two models by recursively applying (2) but with the
correspondence being expressed over the indexing feature and some other model. (The
only restriction on this process is that the resulting description of the indexing feature
should carry enough information such that it can be detected in some reasonably complex
image.) A good match with a similar feature indicates a set of possible model hypotheses.
Each hypothesis must then be tested by a full model match with each model associated
with that feature; though each match will be highly constrained by the parameters of the
viewing transformation for the indexing feature.

Both schemes have the disadvantage of exhaustive search across the set of indexing
features during hypothesis generation. Though there will be fewer 'similar’ indexing
features than ‘critical’ features (due to the sharing of features between different models)
this is at the cost of exhaustive search during hypothesis verification. Therefore, one must
restrict the number of models that each similar feature indexes; one must find some
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balance between the generality and uniqueness of a feature [6, 7]. Furthermore, a system
must make active use of both the similarities and differences holding between objects.
Similar features model similarities for indexing but 'passively' use differences during
hypothesis verification and vice-versa for critical features. However, it would be helpful
to make use of structural differences and similarities during indexing simultaneously.

3 Indexing via Structural Deformations

In 2D MBYV it is generally assumed that the viewing transformation between two
representations is either a rigid or a similarity transformation. However, one can use a
'non-similarity' transformation, such as anisotropic scaling or shear, as part of the
viewing transformation between two representations. Features can be formed as in (2)
above but with a deformational component as part of T. Thus the correspondence between
models yields an indexing feature which can map onto different phenomenal forms via the
different values of the deformational parameters of T i.e. an indexing feature can be
shared across quite different object classes. This ‘canonical feature' will be related to each
deformed model instance and the index from the feature to each indexed model is given by
the parameter values of the deformation. Thus, like 'similar’ features, the same indexing
feature could index a number of different models. However, the parameter values of the
non-similarity part of T can be used to provide critically distinguishing indices. In general
there is no need to exhaustively search all of the models associated with an indexing
feature. In those cases where the phenomenally same feature exists in more than one
model the indexing feature behaves as if it were a similar indexing feature type, but only
for those models sharing the same parameter values for the deformation. Thus the similar
indexing feature approach is a special case of indexing via structural deformations.
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Figure 1: Deformed instances of the canonical indexing feature 'handle’ appear in the object models (a) to
(d) which are the 'bottle’, ‘c-spanner’, 'screwdriver', and ‘bracket' respectively. The specific parameter values
of the four different deformations of the "handle’ provide the indices from that feature to the four models.

Consider the example of the different shapes in Figure 1; there are four different models
and a feature. Each model contains an anisotropically scaled instance of the 'handle’ - the
five line segments furthest to the right in each model. Thus the 'handle’ can be thought of
as a stretchable feature. Each instance of the 'handle' within the individual models is
different, both with respect to the canonical indexing feature and from each other.
However, each instance is related to every other as any instance can map onto any other.
Thus the 'handle’ represents the shared structure between the different object classes
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whilst the different phenomenal instances resulting from the different parameters used in
the deformation represents the differences between the shared structures. This satisfies the
condition that an indexing feature simultaneously reflects both the structural similarities
and differences existing between forms.

4 Anisotropic Scaling

The 'non-similarity' transformation considered here is that of anisotropic scaling in the
context of 2-D wire-frame drawings. The primitives are directed line segments,

—_.-_} .
(x1,¥1)(x2,y2) . Let the transformation Top be the mapping:

Top: R% — R? such that

Top( (x1,¥1)(x2,y2) ) = ( (ﬂ\’-xl,ﬂy:)(dxz,ﬁ)fz){) a,pBe R (3)

A transformed feature is simply the set of all directed line segments comprising the

structural description of the indexing feature i.e. f; ={ ( (axl,ﬁyl){axg,ﬁyz_)' Yk }

Consider the special case T where & = . Here anisotropic scaling mimics the

similarity transformation of uniform scaling. To avoid confusion it is best to define this
transformation separately:

Ty = Taaxs R? — K2 such that

T Gy 0y ) = ( AxpAy)(AxaAy2) ) Ae R @)

Both Tyg and Ty can map into the same parameter space P as Ty is merely a special
case of Tgg. Let a feature be deformed according to (3) and then two different uniformly

scaled versions be produced with the scaling factors, A; and A;. The parameters of the
composite transformations give the points (A;0,A1f) and (A20,A2B) in P. There is an
equivalence between the two forms as defined by the ratio of the scale factors:

MB B _Mdb {5)
1.1{1 o lg_{l

Formally, let ~ be an equivalence relation on the set P. We define the equivalence class p1
of an element p; € P to be the subset

71 ={p2€ P:p1 ~p2} (6)

where p; = (a1,B1), p2 = (@2,82), @ and 03 # 0, and ~ is defined as the ratio in (5).
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Thus all uniformly scaled instances of some deformed structure form an equivalence
class and one can choose a particular instance to act as the class representative. The
equivalence class for each deformed instance of a feature forms a line through the origin
and the parameter values of the class representative in P. The equivalence classes of the
models in Figure 1 are shown in Figure 2.

To index one finds the distance between the point in P defined by the correspondence
between an indexing feature and an image, and each point in P defined by the
correspondence between the indexing feature and the class representative of each
deformed instance of that feature present in some model. This gives a partial ordering of
the equivalence classes and, consequently, the models. One can also use a threshold, €,
such that hypothesis verification is conducted only when d(p;,p2) < €. This reduces
unwarranted verification when the parameters of the transformation between an indexing
feature and an image are far from those given by the matches between that indexing
feature and the subset of models to which it is related. One metric for P, which uses (6),
is the absolute value of the angular difference between two points:

P1'p2
-1
— [Ilplll ||p2|1]

Where py, p2 € P and p;!p; is the Euclidean inner product. (7) gives the distance around
the unit circle and is multi-valued which complicates the metric, but it is well known that:

[sxo cosm -sinm _[-sx OJ o [-sxo cosT -sinn} _[sx 0] @®)
0 Sy sinm cosn] LO -Sy 0 Sy sinm cost] LO -Sy

Thus one need only consider the upper half of the plane specified by P to account for all
phenomenally different anisotropically scaled instances. This restricts the range of values
to [0, m] thus avoiding the problem. Also, if an indexing feature is mirror symmetrical, as
it is with the 'handle’, then only the positive quadrant of P need be considered.

Sy 10 2

d(p1.p2) = 0

Sx

o Parameter mapping of the class representative for each model equivalence class
Figure 2: The equivalence classes for the four models related to the indexing feature 'handle’. The
parameters for the class representatives are (a) 'bracket’ (1.25 8.5), (b) 'bottle’ (2,2), (c) ‘c-spanner’ (3,2),
and (d) 'screwdriver' (5,1.5).
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Anisotropic scaling also deals with reflections. This is a desirable property in certain
contexts e.g. the inspection of 2-D machine components which could lie on either side.
Separate representations of the indexing feature are not required. Instead the indexing
feature will have two indices into the same model, (S4,S,) and (-S4,S,).

Finally, although the viewing transformation above deals solely with anisotropic
scaling, the current work uses a 2-D viewing transformation specified by five parameters;
two for scale (S, Sy), one for rotation(y), and two for translation (Ty,Ty):

[ -[ov oS T 1+ [R]

This presents no problem for the current implementation as the length of a line segment,
and hence the scale of an object, is unaffected by rotation and translation.

5 Implementation Details and Performance

The current implementation uses a model-driven hypothesis-verification cycle. It attempts
to determine a correspondence between an indexing feature and an image and, if one
exists, the scale parameters of the transformation are compared with those of the models
associated with the indexing feature as described above. (The current threshold used for
(7) is set at 3°.) Each model indexed must then be verified by a full model match. If
verified those image primitives forming the correspondence with the mode! primitives are
then removed from the image description. This continues recursively until the image is too
small to be matched further or until all of the indexing features have been considered.

Because the system is concerned with the parameter values of viewing
transformations a natural choice of matching algorithm for both hypothesis generation and
verification is the Generalised Hough Transform (GHT) [1, 2]. However, the GHT
makes exponential demands upon memory with respect to the number of parameters of the
viewing transformation. Two techniques are used to overcome this problem:

1. Parameter space decomposition - Because there is a natural dominance of parameters
the 5-D parameter space for the viewing transformation can be decomposed into a
linear hierarchy of three sub-spaces; a 2-D scale, 1-D rotation, and 2-D translation
parameter space in that order [1, 2]. Possible scale parameters for the viewing
transformation are determined and then passed on to determine the orientation
parameter and so on. Because the constraining information of the primitive
measurements are de-coupled a large number of false local maxima are generated in
the scale parameter space. Many of these are eventually disconfirmed by using two
simple constraints. The first constraint is to place a threshold on the metric as
suggested above. The second constraint involves decreasing the number of false
maxima in subsequent parameter spaces by reducing the image description. Only
those image line segments consistent with at least one indexing feature (or model) line
segment under the specific parameter values found in previous parameter spaces are
used in determining the parameters in the subsequent parameter spaces.
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2. Coarse-fine search within parameter spaces - Hierarchical coarse-fine search is also
conducted within each parameter space; this is loosely based upon the Adaptive
Hough Transform [8]. It involves using a coarsely quantised accumulator array,
incrementing the array according to the normal GHT procedure, and clustering any
cells whose count passes a threshold. The parameter values of the bounds of each

_cluster are then dynamically mapped onto the coarse accumulator array and the
process continues recursively. The process terminates when the parameter values
mapped onto the bounds of the accumulator array reach some pre-defined minimal
resolution. The centroids of the clusters of cells found at minimal resolution are taken
as possible solutions for the transformation defined by that parameter space.

The current number of intervals used for each parameter is 15. This results in 225
cells for the accumulator array of the scale and translation parameter spaces and only
15 cells for the rotation space, as compared to 157 for a single 5-D parameter space.
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Figure 3: Matching an image containing two different object types.
Hypothesis Generation: (a) The image. (b) The indexing feature hypotheses. (c) The hypothesised
instances superimposed upon the reduced image description. Hypothesis Verification: (d) The reduced
image description after both hypothesised model matches. (¢) The hypothesised models superimposed on
the reduced image description of (d).
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A typical example of the system at work is given in Figure 3. The 'screwdriver' and
'bracket’ were transformed according to the parameters given in Table 1. Noise segments
were added giving a total number of 35 line segments, resulting in a signal/noise ratio of
0.1666 for each instance of the indexing feature. (The noise was generated by finding the
minimal enclosing rectangle about the objects of interest, and using a uniformly
distributed random number generator to set the endpoints of a segment to fall within it).

Table 1: The parameter valucs of the model transformations used in gencrating the image.
Model Scale ¥ Ty Ty
Screwdriver 1) 30 20 10
Bracket 1.9 155’ 18 9

Table 2 gives the number of hypotheses generated by matching the 'handle’ with the
image for each parameter space in the hierarchy of sub-spaces. Note the power of the
threshold constraint in reducing the number of scale hypotheses and the general reduction
in hypotheses as one traverses the hierarchy due to both the constraining nature of the
successive transformations and the use of image reduction.

Table 2: The results of matching the indexing feature with the image.
No. Scale Reduced No. Rotation Translation
Hypotheses Scale Hypotheses Hypotheses
Hypotheses
37 15 3 2

The two translation hypotheses represent the number of correspondences between the
image and the 'handle’ once scale, orientation, and translation are taken into account. The
parameter values of these hypotheses are given in Table 3.

Table 3: The viewiﬁg transformation parameter values of the two hypotheses
Sx Sy 7 Ty Ty
First
Hypothesis 5.50131 1.63356 30.0267° 20.6667 9.33320
Second
Hypothesis 2.38418 16.17490 155.04* 18.6667 9.33332

The first hypothesis indexes the 'screwdriver' whilst the second indexes the 'bracket'.
These are the required hypotheses; no others have been made. The distance between the
scale parameters and the parameters of the appropriate equivalence classes are 0.16" and
0.13" respectively and fall well within the threshold. Each hypothesis is verified by a
match with the appropriate model and the parameters are given in Table 4 (c.f Table 1).

Table 4: The viewing transformation parameter values of the two verified hypotheses
Sx Sy ¥ Ty Ty

Screwdriver
Hypothesis 1.09927 1.10163 29.9982* 199316 10.05130
Veriﬁczltion
Bracket
Hypothesis 1.90118 1.90018 154.997° 18.1333 9.06666
Verification




175

Several hundred experiments using the database of Figure 1 have been conducted using
images containing from one to three objects with varying degrees of noise. The pattern of
the results given above is typical of the system's performance. It fails to recognise an
object approximately 8% of the time but most of these failures can be avoided by
modifications to the algorithms. Furthermore, when the system generates more
hypotheses than instances actually present this is often due to slightly different scale
parameters. These are still consistent under rotation and translation due to error introduced
by quantisation of the accumulator arrays; they effectively represent the same index and
this is easily resolved by verification of any one of the similar indexing hypotheses.

6 Conclusions

A new approach to indexing has been presented; indexing by the parameter values of
deformable features. This unifies the advantages of both critical and similar indexing
features. Like those schemes it is model-driven and thus necessitates exhaustive search at
the level of the indexing features. However, unlike those schemes, it does not necessarily
entail exhaustive search of those models related to a particular indexing feature. As with
similar features a number of different objects can share the same indexing feature;
different models can be associated with one another if a deformed instance of an indexing
feature is present within them. Furthermore, like critical features, the system gives highly
specific indices for each model related to an indexing feature via the parameter values of
the deformational component of the viewing transformation.

Finally, further work on the current system includes a larger database, a more detailed
analysis of the effect of noise on the system's performance, and an investigation of the
effect of error on the image primitives themselves. The latter is of special interest as
currently the images are generated by transforming the models and adding noise. Related
to this last point is that systems requiring the accurate segmentation of line segments, such
as this paper and e.g. [1, 2], may prove to be too 'brittle’. Therefore, some theoretical
work has been conducted using collections of vertices for indexing features [9]. The
segmentation of vertices may prove to be more reliable than that of line segments. [9]
shows that one can recover the ratio of the anisotropic scale factors from the angles of
vertices thus satisfying (5) and (6) above. This will be the subject of a future study.
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