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Abstract

A novel approach to junction detection using an explicit line finder
model and contextual rules is presented. Contextual rules expressing
properties of 3D-edges (surface orientation discontinuities) limit the num-
ber of line intersections interpreted as junctions. Probabilistic relaxation
labelling scheme is used to combine the a priori world knowledge rep-
resented by contextual rules and the information contained in observed
lines.

Junctions corresponding to a vertex (V-junctions) and an occlusion
(T-junctions) of a 3D object are detected and stored in a junction graph.
The information in the junction graph is used to extract higher level
features. Results of the most promising method, the polyhedral object
face recovery, are briefly discussed. The performance of the junction
detection process is demonstrated on images from indoor, outdoor, and
industrial environments.

1 Introduction
Perceptual groupings of image features have been widely used in computer vi-
sion systems to guide scene interpretation and 3D model matching [1, 2, 5, 9,
10]. Of all perceptual groupings studied by psychologists [13, 4] and computer
vision researchers we focus our attention on junctions of line segments - points
of co-termination of lines. As co-termination is a projection-invariant property,
the task of junction detection would be relatively simple in an ideal noise-free
world. A set of lines terminating at the same point could be interpreted as a
projection of edges meeting at a vertex. However, due to the inherent inaccu-
racy of line (and edge) detection, endpoints of lines can be widely separated
even if the lines emanate from a cpmmon vertex.

In a novel approach, an explicit error model for line detection in conjunc-
tion with contextual rules is used to recover junctions. The contextual rules
express physical properties of 3D-edges (discontinuities in surface orientation):
1. projections of 3D-edges never cross and 2. visible parts of 3D-edges termi-
nate at either a vertex or a point of occlusion. Both the use of context and an
empirically tested explicit error model is a distinguishing feature of the work
presented in the paper.

The problem we are facing can be stated as follows: For every line A, find
line B which is most likely the line that occluded/had a common vertex in
3D with A. Of all possible assignments for A and B that don't violate rule 1.
select the most probable one given the line detector error model. A probabilistic
relaxation scheme developed in [6] is applied to the junction detection problem
(Section 3). Section 2 specifies the line detection model. Implementation issues
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are addressed in Section 4. Section 5 presents intermediate level groupings built
on top of the junction finder The results are summarised in Section 6.

2 Line detector model
Conceptually, the first stage of the junction finder can be viewed as an attempt
to recover projected lines. A projected line is, by definition, a projection of a
3D-edge and therefore must terminate at an intersection of 2 or more projected
lines. A set of all projected lines would be very close to an 'ideal line drawing'
(see Fig. l(c)).

Any endpoint detected by a line finder can be treated as a noisy measure-
ment of a projected endpoint. A statistical model of the noise affecting the line
finder is a necessary prerequisite for any attempt to recover projected lines.
The junction detection becomes trivial if the filtering process is successful -
any point where two lines touch is a junction. See Figs. l(a)-(c) to com-
pare the line finder output, junction finder output (filtered lines) and a set of
projected lines.

The uncertainty in line parameters is a function of the particular edge and
line finder used. After extensive (but subjectively evaluated) tests we selected
Horaud's implementation [5] of the Deriche filter [3] for edge detection and a
line detector based on Hough transform [12, 14] for line detection. In agreement
with [9, page 367] we observed:

• very precise estimation of the line angle and of the transversal position

• large uncertainty in the localisation of the endpoint

Simplifying the characteristics of the line finder the following model was
adopted: 1. the projected endpoint lies on the straight line defined by the line
segment. 2. if d denotes the (oriented) distance from detected endpoint E with
positive values of d for point outside the line segment, then the endpoint error
distribution is

P(d)=\ [' '" (1)

The two constants, fc,n and kout control the shape of the exponential. At
present the values are set to 0.5 and 0.1 pixels respectively (Fig. 2). The
choice of exponential is somewhat arbitrary, but Fig. 3 shows that it is in good
agreement with empirical data. Test runs with different fc,n (range 1-0.2) and
kOut (0.2-0.03) produced similar results suggesting that the performance of the
junction finder is not critically sensitive to the shape of the distribution.

3 Junction detection using probabilistic relax-
ation labelling

Visible parts of 3D edges terminate at either a vertex or a point of occlusion.
A junction is a projection of such 3D point. The line finder model (section
2) guarantees that all junctions lie at an intersection of straight lines passing
through a detected 2D line. Consider the example of Fig. 4. If line A is a
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Figure 1: CUBE. A simple scene with a test object used for stereo camera head
calibration in the VAP project [15]. In Fig. (a), lines detected by Hough trans-
form are superimposed over the original image. Note that errors in orientation
and transversal position of line segments are negligible. Fig. (c) gives an exam-
ple of an 'ideal line drawing' of the CUBE scene. The image was prepared by
editing the result of the junction finder shown in (b). Fig. (b) illustrates junction
finder results. Endpoint errors are filtered out by 'stretching' line segments to
junctions. The only significant structural error occurred at the top-left vertex
of the cube. The left vertical edge of the cube is associated with the rear edge
of the table. The result is explainable; the line corresponding to the vertical
edge was terminated very close to the projected rear table edge because there is
no gray level gradient between the front face of the cube and the background.
Results of the face recovery postprocessing (Section 5) are shown in Fig. (d).
Using geometric information enabled the recovery of the front face despite the
top-left vertex problem described above. Gap bridging postprocessing (Fig. 6)
joint the two lines on the rightmost vertical edge of the cube.
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Figure 2: Assumed endpoint error distribution of the line finder, d denotes the
distance from an enpoint along the line segment. Negative values refer to points
inside the line segment.

projection of a 3D edge it must terminate at a junction that is identical to one
of the intersection 7aj,, Iac, Iad- We are concerned with the problem of com-
puting the probabilities of all events {Ae = 7a,-,Vi}. To exploit the contextual
information conveyed by these interacting events we compute the probabilities
using a dictionary based relaxation scheme whereby the probabilities at stage
n + 1 are obtained from probabilities Pn(Ae = /<,;) at the previous iteration,
ie.

n+\A =Ae = (2)

The initial probabilities P°(Ae — /<,,-) are computed using the Bayes formula
from the probability distribution of endpoint errors (Eq. 1, Fig. 2) and prior
probabilities. All prior probabilities in Eq. 2 are assumed to be equal. The
context is introduced using a dictionary A that contains all permissible config-
urations of junction assignments. The dictionary is constructed using to rules
obeyed by projections of 3D edges: 1. projected lines must not cross and 2.
every projected line must terminate at a single junction.

4 Implementation of the Junction finder

The junction detection process is performed in three stages - initialisation and
preprocessing, relaxation, and postprocessing. In the first stage, all intersec-
tions of line pairs are considered as possible junctions. Any intersection with
endpoint distance outside the margin of error of the line detector is immediately
discarded. Each intersection is assigned an initial, non-contextual probability
according to Bayes formula. The information associated with every intersec-
tion is stored in a node of an intersection network. Each node in the network
is linked to four other nodes representing its predecessor and successor (with
respect to distance) in the list of intersections of one line (Fig. 5(a)).

In the relaxation stage, repeated sweeps through the intersection network
are made. At each endpoint, the probability distribution is updated according
to context-conveying formula 2. Generally, the probabilities of an intersection
being a junction gradually shift either towards 0 or 1. At the end of the sweep,
intersections with 0 probabilities are deleted (it follows from formula 2 that
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Figure 3: Histogram of enpoint distance errors. The output of the junction
finder, the junction graph is assumed to represent the ground truth (see Fig. 8 to
check the validity of this assumptions). Histogram of line end to corresponding
junction distances (solid line) shows good agreement with the line detection
model (Fig. 2 ). The dashed line graph shows the running average of two
consecutive histogram bins (of 0.5 pixel size).

lad

D

Figure 4: A set of interacting lines
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the probability would remain 0 ). The originally dense network (Fig. 5(a))
is gradually transformed into a structure similar to Fig. 5(b). The iteration
loop is exited when the average relative change of intersection probability falls
under a preset threshold (default: 2%).

Finally, only intersections with maximum probability at an endpoint are
retained and labelled as either V or T junctions. An intersection having a
maximum probability with respect to both participating lines is assumed to
be a projection of a vertex; the intersection is labelled a V-junction. If the
intersection probability is a maximum with respect to one line only then the
other line must 'pass through' (other possibilities are suppressed by the relax-
ation process). The situation indicates that the intersection is a projection of a
point where a 3D-edge was occluded; the intersection is labelled as T-junction.
The network of intersections is transformed into an attributed graph structure
called a junction graph, (Fig. 5(c)). Every node of the junction graph repre-
sents a junction relation (either V or T) between a pair of lines. The junction
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Figure 5: From intersection network to junction graph. The large margin of
error of the line detector allows for multiple interpretations of an endpoint. An
intersection network structure is created to facilitate the probabilistic updating
of intersection probabilities. During the relaxation process, the network becomes
sparser as probabilities of some intersections drop to 0 (see Tab. 1). Finally, all
non-maximum junctions are discarded - a junction graph is created (c).

graph is a semi-symbolic structure; numerical information is attached to both
junctions (position, probability) and lines (position). The junction graph can
be used for both symbolic and geometric reasoning about the scene (see section
5).

image
time
lines

iteration

1
2
3
4
5
6
7

HOUSE

1.6s
78

inters.

563
368
142
142
142
142

change

84.16
75.08
24.03

2.09
5.73
0.38

W I D G E T

0.7s
44

inters.

247
164
85
85
85
85
85

change

84.01
67.00
50.29

7.15
3.20

20.41
3.36

TOYS

2. Is
90

inters.

800
489
204
204
204
204

change

86.60
73.34
25.65

2.80
5.65
1.04

CUBE

0.4s
28

inters.

107
64
43
43
43
43

change

83.72
47.00

7.87
1.26
6.49
0.99

Table 1: Junction finder performance. The processing time was measured on
a SPARC 2 machine. The 'inters.' column shows the number of intersections
processed in the n — th iteration. The 'change' column contains information
about an average change (in %) of the intersection probabilities

The efficiency-minded readers may express doubt about the speed of the pro-
cess. The computational complexity of the implementation of preprocessing is
O(N2) (where N is the number of input lines) as all line pairs are examined (an
O(NlogN) algorithm can be found in [16]). The theoretical worst-case com-
plexity of the iterative relaxation is even worse. Fortunately, the worst-case
complexity is not of practical importance (representing a situation where all
lines terminate in a tight cluster); the average complexity is extremely hard
to derive analytically, but empirical results suggest O(NlogN). Table 1 sum-
marises the junction finder performance. For run-times in the order of seconds
1. optimising performance of the junction finder is not of particular importance
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and 2. the performance depends more on system specific constants (i/o speed
etc.) than on the computational complexity. The good performance is a con-
sequence of the focus of attention property of the relaxation labelling. After
two or three iterations, app. 2N (not the theoretical TV2) intersection proba-
bilities are updated. Most of the processing in later iterations revolves around
a set of ambiguous intersections ( Tab. 1, column 'inters.'). Empirical data
(column 'relative change' in Tab. 1) suggest good stability and fast, although
not monotonic, convergence.

5 Beyond the Junction Graph

The junction graph can be viewed as a final result of the junction finder. The
richness of the information represented by the junction graph invites further ex-
ploitation. Three methods, gap bridging, V3-junction detection and polyhedral
object face recovery, are presented in this section.

Gap bridging (see fig. 6 for full description) corrects edge detector failures
at T-junctions. The V3-junction detector finds subgraphs of the junction graph
that are likely to be projection of a 3-vertex, a vertex where 3 visible 3D-edges
meet. In Section 2 we made an assumption that transversal positions of lines
are error-free. This implies that all 3 (or, more generally n) lines terminating
at a common 3(or n)-vertex should intersect at a single point. In practise,
the line intersections are clustered in a small region. The implementation is
straightforward; for every V-junction: check for V-junctions in a small (default:
1 pixel) neighbourhood. The size of the neighbourhood makes false positives
virtually impossible. Examples of V3-junctions can be found in figs. 8 and 1.

(d) / (c) / (0

Figure 6: Gap bridging. Conventional edge detectors perform poorly (subfig.
(b)) in areas where 3 regions (subfig. (a)) meet (see [11, 8]). This causes a
projection of one 3D-edge to be broken into two line segments (c). Spatial ar-
rangement (c) of line segments give rise to subgraph (d) of the junction graph.
Situation (d) can be interpreted as either a view of a vertex from a highly im-
probable, accidental viewpoint or as a manifestation of the above mentioned
edge detector problem. The latter interpretation is assumed (the former having
a negligible probability) and the subgraph is transformed into the form depicted
in subfig. (e). The gap bridging process is context dependent; gap of subfig. (f)
of length &i, although significantly smaller then d\, is left intact. Examples of
the gap bridging can be found in the HOUSE (see e.g. roof), WlDGET (upper
vertical edge of the from face) and CUBE images (Figs. 8, 1)
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Recovery of polyhedral object faces is more complex. If 2D line segments are
projections of 3D-edges and junctions projections of vertices then a completely
visible face of a polyhedral object must project into a closed loop of V-junctions
in the junction graph. Fig. 7 illustrates results of the face recovery procedure.
Application of face recovery for fast 3D pose estimations is described in [7].

(a) (c)

Figure 7: Results of polyhedral face recovery. Closed loops in the junction graph
are assumed to correspond to 3D-edges and vertices of a polyhedral object face.
Only one incorrect face is recovered in the TOYS scene (the non-convex polygon
inside the large hexagon of Fig. (c); a careful scrutiny of (c) and Fig. 8(f)
reveals an accidental alignment of the block and pad leading to junction graph
distortion). Fig. (a) shows corrected lines - lines stretched to terminate at a
junction (compare with Fig. 8(b)). The single face recovered in the HOUSE
scene is a projection of the window frame (corners marked by • ) .

6 Conclusion

We have presented an algorithm for junction detection with two new features:
exploitation of spatial context and use of an explicit line detector model. The
combination of contextual evidence is not based on an ad hoc method; a well
established method, probabilistic relaxation, is employed to accomplish the task.
The tests performed to validate the line detector model could prove valuable
in its own right as an evaluation tool for line detectors.

The junction finder performance has been tested on hundreds of images,
mostly running as a part of a continuously operating vision system [7]. Four
scenes, HOUSE, TOYS, WIDGET, and CUBE, were selected as representative
of different environments (indoor, outdoor, industrial). Results (Fig. 8) show
that our main objective has been achieved - vast majority of V and T junctions
indeed correspond to vertices and occlusions in the 3D world. Success of the
polyhedral face recovery strongly supports this claim. The junction finder
possesses two key features vital for continuous operation - it is fast and it doesn't
require any user-defined thresholds even in changing conditions. Experiments
have shown [7] that the junction finder output provides salient intermediate
level features for model invocation and 3D pose estimation.
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(e) (0
Figure 8: HOUSE, WlDGET and TOYS scenes. Figures (a), (b) and (c) show lines
detected by Hough transform superimposed over the original image . Figures (b),
(c) and (d) depict lines corrected by contextual gap filling (described in section
6) and the results of the junction finder. T-junctions (indicating an occlusion)
are marked by • ; V-junctions (indicating a vertex of two 3D edges) by + and
V3-junctions (indicating a vertex of three 3D-edges) by x.
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