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First we review an analysis of conditions that should be met if features are
to provide robust inferences about world properties. Features meeting these
conditions provide indices into especially useful categories of visual properties.
Then we show that for a given set of elemental concepts the categories associated
with these properties have a natural hierarchical (specialization) structure. We
argue that this structure provides constraints on the form and type of categories
that are inferred when visual objects are classified.

1 Introduction
Perception, or "seeing", involves the assignment of world properties to im-
age elements. Both machine and biological vision systems proceed in this
task by recasting the image pixels into meaningful "features", from which
object properties are inferred [l]. The features suitable for this task are not
arbitrary, but are highly constrained, and have a natural hierarchical struc-
ture. This structure mirrors that of natural processes, thereby providing
a basis for inferring natural categories. Hence we begin with a review of
conditions that constrain the choice of those special features that provide
robust inferences about world properties.

2 What Makes a Good Feature?

Let the world consist of various properties P that are associated with
various contexts, C. Then p(P\C) denotes the conditional probability of
a property, P, such as "has 4 corners" in the context C, which could
be sitting "on a plane", "in this region", etc. Similarly the collection
of measurements of a property and their conditional probabilities will be
specified by F and p{F\C). Note that p(P\C) and p(F\C) are simply
objective facts about the world and are not statements about the perceiver's
model of the world. Our first task is to place conditions on F, P and C that
ensure the measurements F constitute a reliable indicator that P occurs
in the world.

'Authors contributed equally and their order is arbitrarily permuted. WR and JF are at Mass.
Inst. Tech., Dept. Brain & Cog. Sci., Cambridge, MA 02139; AJ is at the Univ. Toronto,
Dept. Computer Science, Toronto MBS 1A4. This work was supported by AFOSR 89-504 and
NSERC Canada.. Correspondence should be addressed to WR.

BMVC 1992 doi:10.5244/C.6.11



100

2.1 Reliable Inferences

The posterior probability of inferring property P given the feature F in
context C is p(P\FkC). A reliable inference makes this probability nearly
one, and keeps the probability of an "error", i.e. p(notP\FkC) near zero.
Hence a reliable feature F, in context C, will keep the following ratio,
namely -Rposf much larger than one:

Rpost = p{P\FhC) I P(notP\FicC). (1)

Using Bayes Rule, Rpost c a n be broken down into the product of two
components, a likelihood ratio L that relates to the "imaging" of P onto
F, and the prior probability i2 p r j o r , that relates to the genericity of the
world property P in context C. Specifically, RpoSt = L • -Rpn'or' w n e r e

Rprior = P(p\c) I p[notP\C) and L = p{F\PkC) / p{F\notPScC). (2)

Note that the likelihood ratio captures the intuition that a feature should
arise reliably from a given world property, i.e. L » 1. As will be seen
in the next section, however, this condition does not insure a reliable in-
ference, because if Rprjor becomes too small, then Rpost c a n become in-
significant even in the presence of a high likelihood ratio. (Also see [2].)

2.2 An Example

Consider a world of line segments on a plane seen under orthographic view.
Of interest is the special property "two line segments are parallel". Let the
threshold for discriminating the orientation difference between two (adja-
cent lines) be 8, and let 6 << 8 be the limiting resolution of the process
that governs straight and parallel. Now let the collective distribution of the
orientation 4> of all line segments be rather flat (Figure 1A). Given this con-
text, we are now presented with two lines that fall within the crosshatched
sample for 4> < 8. Hence the two lines appear parallel; should we conclude
that these lines indeed arise from a parallel process?

First note that the likelihood ratio, L, is very high, because (i) whenever
parallel lines occur in the world, they always will appear parallel in the
image, and (ii) our chance of error is vanishingly small - when two lines
are not parallel, they will not be seen as such except in the rare case
when they lie within our limit of resolution 8. Hence p[F\PkC) = 1 and
p(F\notP&cC) is, say 0.01 if 8 is 1 part in 100. It appears therefore that
we should infer that the lines are indeed parallel in the world. However,
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Figure 1 A: Flat distribution function. B: "Modal" distribution.

given our chosen random world context, such an inference is almost always
guaranteed to be wrong.

Consider the prior probability ratio Rpr^or Because the prior proba-
bility 6 of the parallel process occurring is much less than the resolution
limit 0, the area occupied by 6 in Figure 1A is much less than the area set
by 6. Thus Rprjor = 6j[\ - 6) « 0, and its product with the likelihood
L = 1/0 will give an a posteriori probability ratio RpoSt < 1. Hence the
odds really favor the conclusion "not parallel". (See [2] and [3] for further
details and examples.) In order to raise RpoSt to a significant level, we
need significant priors, say a 6 in this case such that 6/8 » 1. In terms of
Figure 1, this is equivalent to requiring that the 4> distribution function for
pairs of lines be biased, such as indicated in Figure IB where the process
"parallel" appears as a mode in the probability distribution function.

3.0 Model Class

The important message of the previous example is that "good" features
arise from some modal regularity in the distribution function of world
properties. However, not all regularities satisfying the likelihood and prior
conditions will be useful. For example, the property "two skewed lines"
satisfies these two conditions, but clearly this property is not very infor-
mative. Hence what we seek are properties that are not just arbitrary
configurations, but rather ones that are in some sense special.

3.1 Two Kinds of Regularities

Structural regularities within a given model class can be divided into two
classes: transverse and non-transverse [4]. Transverse relations arise when
the elements of the model are postioned arbitrarily such as the above two
skewed lines; non-transverse arrangements require careful positioning, as
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implied by the term "non-accidental" of Binford [5] and Lowe [6]. Unlike
the notion of "non-accidental", however, the usage of transverse and non-
transverse requires a context. Thus, "two parallel lines" (or planes) in a
random stick (or planar) world would be non-transverse, but in the context
of a building with windows and doors, etc., the concept "parallel" would
become transverse. Within the proper context, non-transverse properties
are thus very special. But as we showed earlier, in order to be recoverable
from image features, the non-transversality must be an isolated spike in the
distribution function as in Figure IB, with sufficient mass to be "visible".
This is what previous researchers meant by "modal" properties [7, 8, 9].
Features that satisfy (2) and which arise from non-transverse regularities
provide especially reliable and useful inferences about world properties and
are called Key Features (see [2] for "natural" examples taken from motion
and color). Loosely speaking, F will be a Key Feature for property P if
P is a generic non-transverse mode in the space of world models, and F
occurs in the presence of P but never in its absence. Hence the set of
properties that image onto the Key Features are an especially useful set of
properties, because they are reliably inferable.

3.2 An Example

To illustrate a set of properties that image onto key features in our sim-
plified world of line segments in a plane, assume there are two processes
that generate two types of relations between two lines. One is the process
"parallel"; the other is a process "coincident", where the lines just touch
one another. We take these regularities as generic - i.e. we stipulate that
both occur with significantly non-zero probabilities in the given context.
First we enumerate those regularities that image to key features. Then
in the following section, we will place an ordering on this special set of
properties.

The enumeration is equivalent to identifying all the non-transverse con-
figurations between line segments in a plane, given the chosen context. We
assume the measurement is the orientation of one line to the other, 4>, and
the position x, y of the end-point of one line with respect to the other.
Hence the relative positioning has three degrees of freedom (DOF). Re-
ferring to Figure 2, the uninformative, transverse regularity chooses x,y,
and <f> arbitrarily, producing two skewed lines. (Intersection or not was not
specified in our model class and an "X" will be treated as equivalent to
skew without crossing.) First, with care the end of one line can be placed
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Arbitrary [ 0 ] Coincident (end to line) [ 1 ] Coincident (ends) [ 2 ]

Parallel [ 1 ] Parallel & Coincident [ 2 j
(end on line)

Figure 2 Line-to-line non-transversalities.

Parallel & Coincident [ 3 ]
(end to end)

on the other (or its extension), eliminating one degree of freedom. These
configurations are assigned a codimension of one. Next, with still more
care, we can place the end of one line exactly on the end of the other,
allowing only the angle <f> to vary. This arrangement has a codimension of
two.

Similarly, if the lines are parallel, then the orientation is fixed and the
cost, or codimension of the arrangement is again one. However parallel and
coincident lines, with one end allowed to slide along the other, increase the
codimension further to two. Finally, we have the last, most special case
of positioning of codimension 3 where the two lines merge into one when
placed end to end in a parallel arrangement.

4.0 From Features to Categories

Our main point will be that the "interesting" structural regularities in a
model class - namely those that satisfy the key feature conditions - can
be used as a basis for partitioning the model class into categories. In the
previous example, the property space would be built from the end-point
position measurements x, y, and the relative pose (j>. Within this x,y,<f>
space, our proposal is that the partioning should make explicit the line-to-
line non-transversalities illustrated in Figure 2. If this scheme is adopted,
then the subspaces will preserve the character of the nontransversal modes,
thus distinguishing among the interesting properties. Note that the context
sensitivity is critical to our set-up, because it permits legitimate reconfig-
urations of the property space depending upon the observer's goals, etc.
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4.1 "Two Stick" Categories

Continuing our example, we identify the modal subspace as that associ-
ated with our "two-stick" model class presented earlier in Figure 2. Each
of these configurations has a codimension, which allows us to place each of
these non-transverse modes in a lattice, where each node depicts a proper
subspace in the particular context (Figure 3A). The top node shows the
arbitrary two-stick configuration. As we move down the lattice, the nodes
below differ at each successive level by the removal of exactly one degree-
of-freedom from the configuration. Upward transitions, then, are the el-
emental ones that locally "break" or "unfold" a non-transversal property
but which do not add any additional non-transverse properties. An im-
portant example is the missing link between the "V" and "parallel line"
nodes (or similarly, the "T" and "collinear" nodes). There is no direct
route from one node to the other. The explanation is that the concepts
"coincident" impose a constraint on the endpoint position x, y of one line
with respect to the other, whereas the concept "parallel" is expressed by
an angular relation, <f> between the two lines. Because position (x, y) is not
defined by angle (<f>) or vice versa in this context, there is no intersection
other than the excluded degenerate case of two coincident lines. A similar
explanation applies to the missing path from the two "collinear" lines and
the T " node.

At the bottom of the lattice, two nodes have the two sticks collapsed
to one. These two nodes have broken outlines to indicate that they are
not part of the lattice for the perceptual context because they suggest a
"one-stick" configuration. (If the two sticks were each identified in some
manner, say by coloring, then the dashed paths and nodes would become
part of this "two-stick" category lattice.)

4.2 "Natural Example": Beetle Lattice

In the biological realm, growth processes exhibit regularities [10]. To illus-
trate how such regularities can be used for a taxonomic classification, we
will use a simple modification of the "two-stick" mode lattice of Figure 3A.
Let the context be the backs of beetle-like bugs that are marked by two
distinctive lines oriented with respect to the symmetry axis of the beetle.
As is typical for biological shapes, we assume the markings are generated
symmetrically about this axis. Hence, with respect to our "two-stick" mode
lattice, one stick - the "reference stick" - will simply be the symmetrical bi-
sector of the beetle's back. The other, namely the "second stick", will thus
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Figure 3 A: "Dot-on-line" categories. "Two-stick" categories
given concepts coincidental andf parallel. See text for explana-
tion of dashed paths and nodes. B: Beetle taxonomy, based on a
version of a "two-stick" mode lattice.

appear twice in mirror image positions about this symmetric axis. (The
situation is equivalent to symmetric markings appearing on a left and right
wing.) As before, we assume two possible marking processes, one laying
the mark down parallel to the bisecting axis, the other positioning the end
point (of either the reference stick axis or the additional marking stick) to
be coincident with one of the two lines. All of this sets the context.

Because the two-stick modes in a similar context have already been
enumerated, we simply need to recast the previous lattice of Figure 3A in
a symmetric form compatible with this revised "biological" context. This
has been done in Figure 3B, where now each node depicts the markings
on the beetle's back. At the top, the two symmetric marking lines are
set arbitrarily with respect to the bisecting axis (dotted). This is the
codimension 0 case for this species. At the next level either the coincident
or parallel process applies, giving us three codimension 1 subspecies. Next,
we have two codimension 2 cases: in one the marking lines form a V, coming
together at the "head" of the reference line, or the other where the two
marking lines collapse onto the reference line (but do not reach the head
of the beetle). Finally we have a single codimension 3 case in this context
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where the "V" collapses onto the reference bisecting line. Given these
generating processes and this context, these are all the types of beetles
expected. These types, with the exception of the "generic" beetle at the
top, represent the beetle modes or subspecies, each exhibiting a slightly
different, but related regularization of the ontology of beetles. Thus the
beetle lattice is a convenient hypothesis generator for an observer who is
seeking to assign any particular beetle to its "natural" category [11, 12].

5.0 Category Induction

It is easy to imagine that pairs of sticks or beetle markings in a world might
obey the regularities depicted in the nodes of the lattice of Figure 3, having
all originated from some common underlying processes. Then it would seem
plausible that object categories corresponding to the regularities found on
the lattice are more prone to occur in the world than completely arbitrary
collections of stick-pairs that are not on the lattice (This is the Natural
Mode assumption [7, 9, 13].) Putatively, then, when an observer examines
a collection of stick-pairs, or beetles, the conclusions about what cate-
gory processes are responsible for the observed collection will be drawn
exclusively from the conceived lattice. Consider the induction problem in
Figure 4A. What is the common description of the collection on the left
as opposed to the collection on the right? An infinity of different answers
are possible, many making entirely different predictions about what "more
of the same" would mean on each side. However, the simple answer "V's
versus parallel lines" is most intuitively compelling. Note that such predic-
tions about what new examples of either side will look like constitute an
enormous inductive leap, since so many alternative solutions are also pos-
sible given the small number of exemplars. The problem in Figure 4B can
similarly be solved almost instantly, namely T's and V's versus "parallel
and collinear lines". Note that our conclusion was not T's versus parallel
lines, although the V's and collinear lines are respectively degenerate cases
of T's and parallel. Thus each node in the lattice is taken as a separate
category in its own right.

The previous example shows that the mixture of two nodes is never on
the lattice. This property allows categories to be inferred correctly by an
observer even when they are intermingled, because the collapsed compo-
sitional category that all objects are of the same kind is not a sanctioned
hypothesis (see [14]). Again this is seen in panel C, where now we have
mixtures of different beetle subspaces. Hence as long as the world presents
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Figure 4 Category induction.

only lattice regularities, an observer can report correctly the number of cat-
egories present - a capacity unaccounted for by conventional categorization
techniques such as clustering.

Finally, in panel D we have presented a set of beetles that clearly appear
defective. Note that these beetles fall outside the normal beetle definition
because of their asymmetry. Rather than concluding these forms don't fit,
however, instead we attempt to hypothesize that they are altered defective
forms of recognizable categories. On the top half of Figure 4D we are suc-
cessful, in the the bottom half we are not - these latter beetles seem "weird"
mutants. Hence whenever possible the lattice is used to "regularize" the
defective beetles back to the true form [15]. When such regularization
is impossible, then the beetle is seen as inconsistent with our models for
the generative process of natural forms. Hence the category lattice built
from easily recognizable non-transverse structural modes appears to play
a major role in object classification and recognition.
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