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Abstract
We demonstrate the recovery of 3D structure from multiple images, with-
out attempting to determine the motion between views. The structure
is recovered up to a transformation by a 3D linear group - the affine and
projective group. The recovery does not require knowledge of camera
intrinsic parameters or camera motion.

Three methods for recovering such structure based on point corre-
spondences are described and evaluated. The accuracy of recovered struc-
ture is assessed by measuring its invariants to the linear transformation,
and by predicting image projections.

1 Introduction
A number of recent papers have discussed the advantages of recovering struc-
ture alone, rather than structure and motion simultaneously, from image se-
quences [4, 5, 6]. Briefly, structure can be recovered up to a 3D global linear
transformation (affine or projective) without the numerical instabilities and
ambiguities which normally plague SFM algorithms. In this paper we compare
and evaluate three methods for obtaining such structure. The novelty of this
approach is that camera calibration, extrinsic or intrinsic, is not required at
any stage. The absence of camera calibration facilitates simple and general
acquisition: Structure can be recovered from two images taken with different
and unknown cameras. All that is required for unique recovery is point corre-
spondences between images. Here the points are polyhedra vertices.

The three methods are labelled by the minimum number of points required
to compute the epipolar geometry (see below). If more points are available
a least squares minimisation can be used, though which error measure should
be minimised for noise in non-Euclidean structure recovery is an unresolved
question.

1. 4 point - affine structure
This assumes affine projection1. It requires the least number of points
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of the three methods. The structure is recovered modulo a 3D affine
transformation: Lengths and angles are not recovered. However, affine
invariants are determined. For example: parallelism, length ratios on
parallel lines, ratio of areas.

2. 6 point, 4 coplanar - projective structure
The camera model is a perspective pin-hole and structure is recovered
modulo a 3D projective transformation (i.e. multiplication of the homo-
geneous 4-vectors representing the 3D points by a 4 x 4 matrix). Affine
structure is not recovered, so parallelism cannot be determined. However,
projective invariants, such as intersections, coplanarity and cross ratios
can be computed. The invariants are described in more detail below.

Only two more points (than the affine case) are required to cover per-
spective projection rather than its affine approximation. However, the
planarity requirement is a limitation on the type of object to which the
method is applicable.

3. 8 point - projective structure
Again perspective pin hole projection is assumed, and structure is recov-
ered modulo a 3D projective transformation.

This method makes no assumption about object structure, but requires
more points than the other two methods.

The methods are described in sections 3 and 4.
Structure known only up to a 3D linear transformation, is sufficient to

compute images from arbitrary novel viewpoints. The process of rendering
new images given only imagc(s) of the original structure is known as transfer.
This is described in section 2 and evaluated in section 5.2. Transfer has several
significant visual applications:

1. Verification in model based recognition
Model based recognition generally proceeds in two stages: first, a recog-
nition hypothesis is generated based on a small number of image features;
second, this hypothesis is verified by projecting the 3D structure into the
image and examining the overlap of the projected structure with image
features (edges) not used in generating the hypothesis. This is used rou-
tinely for planar objects [15] where the projections can be sourced from
an image of the object - it is not necessary to measure the actual objects.
The transfer method described here generalises this to 3D objects with
similar ease of model acquisition - the model is extracted directly from
images, and no camera calibration is required at any stage. In contrast,
for 3D structures, previous verification methods (e.g. [9]) have required
full Euclidean structure for the model and known camera calibration.

2. Tracking
The performance of trackers, such as snakes or deformable templates,
in efficiently tracking 3D structure, is markedly improved if the image
position of the tracked features can be estimated from previous motion.
This reduces the search region, which facilitates faster tracking, and gives
greater immunity to the tracker incorrectly attaching itself to background
clutter. The work here demonstrates that by tracking a small number of
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features on an object it is possible to predict the image projection of the
entire structure.

Since structure is recovered only up to a transformation, invariants to the
transformation contain all the available (coordinate free) information. We as-
sess the quality of the recovered structure by measuring these invariants. The
invariants are described in sections 3 and 4 and evaluated in section 5.3.

2 Point Transfer
Transfer is most simply understood in terms of epipolar geometry. This is
described here for the eight point case. In the other cases the principle is
exactly the same, but less reference points are required.

It is assumed that two acquisition images, iniAl and imA2, have been stored
with n known point correspondences (n > 8). Consider transfer to a third
image, imT. The epipolar geometry between imAl and imT is determined
from eight reference point correspondences. A ninth point (and any other
point) then generates an epipolar line in imT. Similarly, between imA2 and
imT the epipolar geometry is determined, and each extra point defines an
epipolar line in imT. The transferred point in imT lies at the intersection
of these two epipolar lines. (Note, it is not necessary to explicitly compute
correspondences between imA2 and imT. Once the correspondences between
imAl and imT are known, the correspondences required between imA2 and
imT are determined from the acquisition correspondences between imAl and
imA'2).

3 Affine invariants and point transfer
This approach is similar to that adopted by [6, 14, 17] and Barrett in [13].

3.1 Affine invariants

The 3D affine group is 12 dimensional, so for N general points we would expect2

3N — 12 affine invariants - i.e. 3 invariants for each point over the fourth. The
four (non-coplanar) reference points3 X,-,z 6 {0, ..,3} may be considered as
defining a 3D affine basis (one for the origin Xo, the other three specifying the
axes E,- = X; — Xo i £ {1,..,3}, and unit point) and the invariants, a, (3, j ,
thought of as affine coordinates of the point, i.e. X4 = Xo 4- aEi 4- /SE2 + 7E3.

Under a 3D affine transformation (with A a general 3 x 3 matrix and T a 3-
vector), X' = AX + T the transformed vectors are X ^ - X ' Q = aEi +/3E'2 + -rE'3,
which demonstrates that a, /?, 7 are affine invariant coordinates. Following the
basis vectors in this manner (they can be identified after the transformation)
allows the retrieval of a, /?, 7 after the transformation by simple linear methods.

Projection with an affine camera may be represented by x = MX + 1 , where
x is the two-vector of image coordinates, H is a general 2 x 3 matrix, t a general

2By the counting argument in the introduction of [13].
3 We adopt the notation that corresponding points in the world and image are distinguished

by large and small letters. Vectors are written in bold font, e.g. X and X . X and X are
corresponding image points in two views.
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2-vector, and X a three vector for world coordinates. Differences of vectors
eliminate t. For example the basis vectors project as e,- = ME; i £ {1,..,3}.
Consequently,

x4 - x0 = aei +/?e2 + 7e3 (1)

A second view gives

x4 - x0 = aei + /?e2 + 7^3 (2)

Each equation (1) and (2) imposes two linear constraints on the unknown
a,/?, 7. All the other terms in the equations are known from image measure-
ments (for example the basis vectors can be constructed from the projection
of reference points X,-,i — {0,..,3}). Thus, there are four linear simultaneous
equations in the three unknown invariants a, /?, 7, and the solution is straight-
forward.

3.2 Epipolar line construction

Equation (1) gives two linear equations in three unknowns, which determines
/? and 7 in terms of a, namely:

/? = [v(x4 -xo,e 3) -av(eue3)]/v(e2,e3)
7 = [-u(x4 - x o , e 2 ) + av(e

where the notation u(a,b) = axby — aybx.
These are used to generate the epipolar line in another view. From (2) x4

lies on the line
x = xo + [v(x4 -x o , e 3 ) e 2 - u(x4 - xo,e2)e3]/u(e2,e3)

+a(§i + [-v(ei,e3)e2 + w(ei,e2)e3]/?;(e2,e3))

which is the equation of a line parameterised by a. Note, all epipolar lines are
parallel with a direction independent of x4.

4 Projective invariants and point transfer

4.1 6 point, 4 coplanar, projective transfer

The 3D projective group is 15 dimensional so for N general points we would
expect 3N — 15 independent invariants. However, the coplanarity constraint
loses one degree of freedom leaving only two invariants for the 6 points.

The meaning of the 3D projective invariants can most readily be appreci-
ated from figure 1. The line formed from the two off plane points intersects
the plane of the four coplanar points in a unique point. This construction is
unaffected by projective transformations. There are then 5 coplanar points and
consequently two plane projective invariants - which are also invariants of the
3D transformation.
J,.l.l Epipolar geometry

The algorithm for calculating the epipolar geometry is described briefly below,
more details are given in [1, 12]

We have 6 corresponding points Xj,x,-,i € {0, ..,5} in two views, with the
first 4 i G {0, ..,3} the projection of coplanar world points.
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Figure 1: The projective invariant of 6 points, 4 coplanar (points 0-3), can be
computed by intersecting the line through the non-planar points (4 and 5) with
the common plane. There are then 5 coplanar points, for which two invariants
to the plane projective group can be calculated.

1. Calculate plane projective transformation matrix T, such that x, = Tx,-, i £
{0,..,3}.

2. Determine the epipole, p, in the x image as the intersection of the lines
Tx,- XXJ, i £ {4,5}.

3. The epipolar line in the x image of any other point x is given by Tx x p.

Jt.1.2 Projective invariants

1. Determine the x image of the intersection, x~/, of the plane and the line
as the intersection of the lines TX4 x TX5 and X4 x X5 [14].

2. Calculate the two plane projective invariants of five points (in this case
the four coplanar points and x>) by

where niju is the matrix [x,-xjtx"i] and \m\ its determinant.

4.2 8 point projective transfer

The construction described is a projective version [4, 5] of Longuet-Higgins' 8
point algorithm [7]. As is well known [8, 10] if points lie on a critical surface the
epipolar geometry cannot be recovered. The method will clearly fail in these
cases.

We have 8 corresponding points x,-, x,-, i £ {0,.., 7} in two views.

1. Calculate essential matrix Q, such that x|Qx,- = 0, i £ {0, ..,7}.

2. The epipolar line in the x image of any other point x is given by Qx.

5 Experimental results and discussion

The images used for acquisition and assessment are shown in figure 2.
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Figure 2: Images of a hole punch captured with different lenses and viewpoints.
These are used for structure acquisition and transfer evaluation.

5.1 Segmentation and tracking

For the acquisition images the aim is to obtain a line drawing of the polyhedron.
A local implementation of Canny's edge detector [2] is used to find edges to
sub-pixel accuracy. These edge chains are linked, extrapolating over any small
gaps. A piecewise linear graph is obtained by incremental straight line fitting.
Edgels in the vicinity of tangent discontinuities ("corners") are excised before
fitting as the edge operator localisation degrades with curvature. Vertices are
obtained by extrapolating and intersecting the fitted lines. Figure 3 shows a
typical line drawing.

Correspondence between views is achieved by tracking corners with a snake.
This stage is currently being developed and some hand matching is necessary
at present.

Figure 3: Line drawing of the hole punch extracted from image A in figure 2.
Points 1 and 5 are occluded in this view.
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Figure 4: The effect of not spreading base points across the entire object.
The transfer is computed from view A and B to view C. The "correct" graph
structure of view C is shown by a solid line and the transferred view by a dashed
line. "Correct" refers to the corners extracted from the real image. Base points
are indicated by a cross. The left figures are affine transfer, the right projective
8 point transfer. Note, the graph structure is for visualization only, points not
lines are transferred.

5.2 Transfer Results

The method is evaluated using two acquisition images plus a third image. Cor-
respondence is established between the reference points in the third and acqui-
sition images (e.g. 4 points in the case of affine transfer). Other points in the
acquisition image are then transferred, the difference between the transferred
points and the actual position of the corresponding points giving the transfer
error. This error is taken as the Euclidean distance d(pt, pc) between the trans-
ferred point pt, and its actual image position pc (i.e. the position extracted
from the actual image). Two measures are used for the evaluation:

1. mean error Emean = £ J2"=i d(p\,pi
c)

2. maximum error Emax = max,- d(p\,pl
c) i 6 {1,.., n}

Method
affine
8 points

Spread out points
mean error

4.09
1.60

max. error
8.72
4.64

Not spread out
mean error

9.56
51.84

max. error
23.72

421.11

Table 1: Mean and maximum errors for the transfers shown in figure 4.
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Figure 5: Typical transfers using the 6 point method with different base points.
Left figure: using off plane points are 6 and 9, measured mean and max. errors
are 3.88 and 15.88. Right figure: using off plane points 7 and 10, mean and
max. errors are 1.76 and 4.91. See figure 3 for point numbering.

Method
affine
8 points
6 points (4 coplanar)
6+ points (5 coplanar)

mean error
4.09
1.60
3.58
2.93

max. error
8.72
4.64

12.09
5.58

Table 2: Comparison of typical results of the various transfer methods from
view A and B to C. Note, the improvement in the 6 point method obtained
by taking an additional coplanar point. The points used for the transfer are
11,13,14,17,(4),6,9. The point in brackets is the additional fifth coplanar point.

In both cases n is the number of points transferred. This varies between transfer
methods as differing number of reference points are involved.

We have found that all methods perform poorly when the base points only
partially cover the figure, see table 1 and figure 4. A similar result was noted
in [11] in the case of planar transfer.

The affine transfer methods is very stable and does not suffer from the dra-
matic errors shown in the projective case (see figure 4). However, as would be
expected, its performance degrades as perspective effects become more signifi-
cant.

The six point transfer method can produce very good results, but success
is very dependent on the "correctness" of the four point planarity. Of course,
four real world points are never coplanar, but here there are additional errors
from measured image positions. Some typical examples are given in figure 5.
Stability can be improved by using more than four coplanar points to estimate
the plane to plane projection matrix. This least squares estimate tends to
cancel out some of the localisation errors in the image measurements (a total
of 7 points for projective transfer, is still an advantage over the eight point
method). This improvement is demonstrated in table 2 which also compares
the three methods for a typical example. The eight point method does achieve
the best performance, but the price paid is additional complexity of finding and
matching extra points.
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Images

A,B
A,C
A,D
B,D
B,C
C,D
A,B,D
B,C,D
A,C,D
A,B,C

a

0.610
0.664
0.597
0.594
0.636
0.681
0.601
0.637
0.670
0.637

0
-0.221
-0.268
-0.213
-0.214
-0.242
-0.285
-0.217
-0.244
-0.274
-0.243

7
-0.009
-0.023
-0.002
-0.003
-0.012
-0.031
-0.004
-0.014
-0.027
-0.013

Images

D,A
D,B
B,A
C,E
F,A
D,A,B
C,E,D
F,A,C
C,A,B,D,E
F,A,B,C,D,E

h
0.440
0.378
0.371
0.370
0.333
0.372
0.369
0.370
0.375
0.369

h
-0.968
-1.117
-1.170
-1.150
-1.314
-1.151
-1.148
-1.196
-1.140
-1.170

Table 3: Invariants for varying sets of images. Left: affine coordinates (a, /?, 7)
of point 20 with respect to the base points 11,13,2,7. Note, measurements are
spread over a smaller range when more images are used. Right: 6 point
invariants using points 2,4,14,17 and the line between points 6 and 13. See
figure 3 for point numbering.

5.3 Invariance Results

We find in general that the invariant values are more stable than transfer would
suggest. This is probably because extra errors are incurred in measuring refer-
ence points in the transfer image.
5.3.1 Affine invariants

Equation (1) and (2) are four linear constraints on the three unknown affine
invariants. Least-squares solution (by using singular value decomposition) im-
mediately confers some immunity to noise. Further improvement is obtained
by including corresponding equations from additional views. The stability and
benefit of additional views is illustrated in table 3. In a tracked sequence robust
estimates can be built in real-time using a recursive filter.
5.3.2 Projective invariants

Although invariants obtained from two views are fairly stable, improvements
in stability are again achieved by augmenting with measurements from other
views. See table 3. In this case by providing a least squares estimate of the
line plane intersection.

6 Conclusion
In this paper, we have presented three methods to recover structure from two
or more images taken with unknown cameras. All that is required is point
correspondences between the images. Structure is recovered up to a linear
transformation, but this is sufficient for transfer and computation of invariants
of the 3D point set.

Experimental results show the methods perform well except for some sen-
sitivity to corner detection errors. Future work will be based on automatically
tracking corners using snakes.
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