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Abstract
A method for labelling edge data in registered intensity and range images is
presented. First, depth, orientation and intensity discontinuities are identified
by one-dimensional filters aligned with the image axes. Second, the filtered
outputs are combined by a maximum a-posteriori probability estimation to
produce a set of edge labels at each site within the dual lattice.

1. Introduction
Recently, there has been interest in improving the robustness of edge detection,

and achieving semantic labelling of physical edges through a combination of intensity
and actively acquired range data, e.g. [1]. In this paper, we discuss a general edge
model based on changes in depth, orientation and reflectance using a simple shading
paradigm and sensor data corrupted by Gaussian noise. 7 categories of edge site may be
distinguished within a dual lattice, i.e. edges are considered to exist between labelled
pixels in the intensity and range images. These are {blade, fold, extremal, mark,
shadow, specular, no_edge). In object models, it is common to include only the first
two categories, although invariant mark edges may also be modelled and provide a
powerful cue for recognition. Blade and extremal edges are similar in terms of a local
shading/depth discontinuity model, but may be distinguished by analysis of the surface
normal adjacent to the edge on the surface nearest to the viewer. The position of
shadow and specular edges is lighting dependent, and may be discriminated by
examination of multiple intensity images.

In the simplified local edge model of Figure 1, h represents a change in depth, h*l

and n"2
 a r e t n e u n ^ surface normals of the adjacent surfaces, and kdl and kd2 are the

local diffuse reflection coefficients.

i i K + i k ( 1 )

We assume a simple model for surface shading in which the reflected intensity, / , is the
summation of light reflected from a point source, Ip, with a unit direction vector L, and
ambient light Ia, with respective ambient light reflection coefficients, kal and ka2- The
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denominator in the second term accounts for fall-off in light intensity due to distance
between surface and viewer, R, and includes a further constant, k.

Expressing n*« {-p, -q,Y) and L - (-pL, -qL, 1), changes in depth, surface normal,
illumination and reflection coefficient produce changes in observed intensity. All four
changes may be present at a given edge site; however, we assume a single variable
changes only, summarised in Table 1. From a single intensity and depth image, and
neglecting local normal analysis in the range data, a 4 category classification of edge
label is achieved, leE.E - {blade/extremal, fold, mark/shadow, no_edge }.

2. Edge classification at single sites
We consider analysis of a vertical site though analysis at a horizontal site is

similar. A row of corresponding raw range and intensity data are defined on the two
sides of a vertical edge site et j by a composite observation vector
y2nximUi,j>->Ii,j>->Iit,j>Ri,j>->Ri,j>->Rn,j]T> where i-n/2 and n is an
even integer. A discontinuity vector is defined as A3xl - [A/, AR, AN] T where A/, M
and AN are the changes of intensity, range and surface orientation obtained by filtering
the raw image data v.

A - Av and A -
«1 a2

0 0

0 0

an 0 0

0 bt b2

0 cx c2

(2)

where A3x2n is the filter matrix. Changes in observed range, orientation and intensity
are related by the geometric and shading model. We assume that the observed raw
intensity and range data are conditionally independent given only the geometry of
surface in view [1],

Assuming a Gaussian noise model for the intensity and range data, with standard
deviation Oj and oR respectively, then the covariance matrix 2 ^ x2n of vector v is a
diagonal matrix. Then probability density function (p.d.f.) of observation A is
multivariate Gaussian given the no_edge label, where the covariance matrix 2 of vector
A is 2 - A 2 A 7 . Choosing filter coefficients in A such that ak--an+1_k,
bk = - bn + j _k and ck - cn + 1 _ k, the covariance matrix 2 is simplified to the diagonal
matrix of equation (3).

o 0 0

(3)
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Therefore, the observed filtered changes in range, orientation and intensity are
conditionally independent given the no_edge label. The p.d.f. p ( A | le - no_edge ) is
simplified into the multiplication of three one-dimensional p.d.f.'s. In general, AR and
AN are independent given the edge label le. From Bayes theorem, the a-posteriori
probability of an edge label le, given an observation vector A, can be computed by the
equation for leEiE.

le) ^P(le\AI)P(le\AR)P(le\AN)

(P{le)f

where z -p(AI)p(AR)p(AN)/p(A) is a constant once an observation is obtained.

The prior probabilities P(le) are constant and are estimated from known image

properties. To evaluate the numerator, we adopt the method in [2],

A2 A2

P(le - no_edge | A ) -= exp ( — - ) and P(le - edge | A) - 1 - exp ( — - ) (5)
o o 2 '

where A may be either A/, AR or AN, and o2 the corresponding variance in equation
(3). From equation (4) the estimate of the edge label at a single site is that for which
P( le | A) is a maximum.

3. Results and Discussion
Figure 2 illustrates the application of the method to a synthetic image. The

original test data is illustrated in the top row. Succeeding rows show the labelled mark,
blade and fold edges with noise levels ot = aR = 1 and 2 respectively. The filter
coefficients of matrix A are calculated from the first (a,-, 6,-) and second (c,-) derivatives
of a Gaussian function of standard deviation 1 pixel, truncated at n - 10. The prior
probabilities P(le ) of blade, fold, mark and no_edge labels are estimated as 0.08, 0.07
and 0.06 and 0.79 respectively. Range and depth data are scaled in the range 0-255.
The majority of mark and blade edges are classified correctly, but some fold edges are
missed due to the weak response of orientation changes. These initial results are
promising, but indicate the necessity for further development and more systematic
testing. Currently, we are considering the effects of misregistration and sparse depth
data in real images, and improving the initial classification by neighbourhood analysis.
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Figure 2: Initial classification results




