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Abstract
This paper describes the design of a system for estimating the pose of

a camera mounted on a vehicle which moves over a flat floor. The sys-
tem has been designed to work in conjunction with an obstacle avoidance
scheme. Measurements are derived from a sequence of images captured by a
single camera rigidly mounted on the vehicle and looking at the floor, and
combined with measurements of the vehicle position in an extended Kalman
filter (EKF). The filter is tested using simulation data.

1 Introduction

The stereo and monocular obstacle detection and avoidance systems developed by
Mallot et al. [1], Sandini et al. [2, 3], and Carlsson and Eklundh [4] all involve off-
line calibration prior to operation. While prior calibration of any system will always
be necessary, on-line recalibration allows for drift or variation in parameters. The
filter described here uses data from an AGV and a single CCD camera to solve a
constrained structure from motion problem which accomodates variations in camera
pose parameters due to vibration or drift. This is similar to a system developed for
AGV control [5].

In the following sections we describe the vehicle and camera, introducing the
parameters which describe the system (the state variables). The quantities which
we measure are described and related to the state variables, the EKF is summarised,
and the update equations given. Finally we describe the simulator and some test
results.

2 The Extended Kalman Filter

State Variables. The position and motion of the camera relative to the fixed
ground plane is described by two sets of parameters: the camera pose parameters
describe the orientation of the camera with respect to the AGV, and the kinematic
parameters describe the movement of the AGV with respect to the ground plane.
The Camera Pose and Optics. The pose of the camera on the vehicle is
described by a set of transformations between the camera and the vehicle coordi-
nate frames. The parameters used to describe the transformation are indicated in
figure 1.
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Figure 1: The arrangement of camera and vehicle, side and top views (not to scale).

Kinetic parameters
Parameter Description Update

typical value

xT

VT

9
u)T 0.25 rad s"1

uT 500 mm s"1

vT 0 mm s~l

au 0 rad s~2

ax 0.02 mm s"2

ay 0.02 mm s"2

position
position
heading
rotation
translation
translation
acceleration
acceleration
acceleration

XT = uT

y'T = vT

<p = uT

UJT - aw

u'T = ax

vT = ay

<4, = 0
dx = 0

dy = 0

Camera Pose parameters
Parameter Description Update

typical value
0 2.2 rad
4> 0.0 rad
4>0 0.1 rad
d 500 mm
T 1150 mm

pitch
roll
offset angle
height
lever

0 = 0
^ = 0
^ , = 0
<f = 0
t = 0

Table 1: The state variables and update equations for the ground plane estimator.

In the simulations we assume the images to be 512 x 512 with a 768 pixel focal
length lens (36° field of view), and square pixels.
The Vehicle. Our work is based on characteristics of the GEC Electrical
Projects AGV [5]. This uses a laser scanner and surveyed barcodes to determine
the pose of the AGV in a fixed "world" coordinate system. The associated co-
variance matrix is also available. In the results presented here, we do not have an
accurate model of the vehicle dynamics. Instead we assume that the three compo-
nents (xT and yT position and heading (<p)) are independent and undergo constant
accelerations.

All the parameters are described briefly in table 1.
The Measurement Equation. For instantaneous rotations a plane described
by a normal N — ( # ] , N2, N3) translating at velocity V and rotating with angular
velocity vector fi gives rise to a motion field which is quadratic in the image plane
(assuming a pin hole camera model).

In a coordinate system with origin at the focal point of the camera the x and y
components of the image plane motion field are

u(x, y) = u0 + uxx ux + uyy + uxyxy

v(x, y) = vo + vxx + vyy + vxyxy + vyyy
2 .

(1)

(2)

The 12 image distortion parameters (IDP) (uo,uz,...), (refered to as f3 parameters
in [6, chapter 6, pages 105-106]) are related to the components of N, V, f?, for
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(a) (b)

Figure 2: Filter response with 1% noise added to motion parameters, (a) estimate
of camera height, d, and the estimated variance (±1 std. dev.). (b) the camera roll
angle, xl>, and the estimated variance (±1 std. dev.).

example, in a camera centred coordinate frame with coordinate axis 3 along the
optic axis,

ux =-(N1V1) (3)

where the components are in a camera centred coordinate frame (coordinate 3 along
the optic axis) [6].

The quantities N, V, f?, may be constructed from the state vectors: e.g. 7V3 =
2 cos(0) where d is the height of the camera and 6 its pitch). The IDP together with
the vehicle pose comprise the measurement vector. The measurement equations
relate the IDP and the vehicle pose to the state variables. Equation 3 for ux and
that for ./V3 and similar are an example. Measurements are obtained by performing
a least squares minimisation over a set of visual motion estimates [6, chapter 6].
The visual motion estimates could be determined using, for example, edge matching
such as described in [6, chapter 2].
The Extended Kalman Filter. The 14 state variables and 15 measured quan-
tities are related by the measurement equation indicated by the equation for ux

and similar expressions [7] or [6, chapter 6]. This is used in a continous-discrete
EKF (see table 6.1-1 of Gelb [8]) with linear system dynamics which are solved
exactly [7].

3 Simulations

The EKF described has been tested using simulated data. Plant noise is added to
the kinematic state variables to investigate a variety of vehicle trajectories. Mea-
surement noise is added to other state variables, e.g. to d to represent a vibration.
The noisy state variables are then used to compute IDPs and these used to generate
a set of flow vectors with random orientation, to which measurement noise is added.
The flow vectors are used in a least squares minimisation which estimates the IDPs
and their covariance matrix. The noise added to the vehicle motion was of order
1-2%, while that added to the states used for generation of the IDPs was of order
0.1 % in each component. The flow vectors were perturbed by approximately 1%.
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Figures 2 shows the response of two components of the state vector (the camera
height, d and the camera roll angle, ip) when the filter was initialised with the true
initial state. The response rate of the filter depends on the assumed uncertainty.
The filter showed greater stability to perturbation of some parameters (all kinematic
parameters excellent, 6 and rp very good, (f>o, d and T occasionally poor).

4 Conclusions

The design of a system for ground plane estimation has been described, and its
implementation tested using simulated data. This has demonstrated that a con-
strained solution of the structure from motion problem can be used to determine
the pose of a camera relative to its supporting vehicle when a vehicle moves across
a flat floor. This could provide the basis for a self calibrating obstacle detection
scheme using vision techniques such as are described by Carlsson and Eklundh [4]
or Sandini and Tistarelli [3].
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