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Abstract
An algorithm is presented to compute smoothed local symmetries on
a MIMD architecture. Based on Brady and Scott's Connection Machine
algorithm, it is adapted to reduce the synchronisation and communication
overheads involved. Using an evidence accumulation approach similar to
the Hough transform for circle detection, this algorithm can compute
both local and rotational symmetries simultaneously. Implementation on
an array of transputers is described and the results discussed.

1 Introduction
Shape Description is an important area in computer vision where many ap-
proaches exist [8]. The main value of shape descriptors lies in the fact that
they can be used as intermediate representations within a complete object
recognition system [6]. Of particular interest in this respect is the Smoothed
Local Symmetries (SLS) descriptor [4, 1, 3] which encodes both the boundary
and the region of a shape. Here we focus on the region based portion.

In [5] Brady and Scott introduce a parallel algorithm to compute the SLS
representation on the Connection Machine. In their algorithm each point in
the image plane is associated with a processor. Processors on the boundary of
a shape store the orientation of the boundary contour at that point and these
contour processors simultaneously propagate messages along their inward nor-
mals. Other processors look for instances of messages passing "almost overhead
almost instantaneously" [5]. In such an event the two message origins on the
boundary are deemed to be locally symmetric and a message is sent to the
corresponding SLS point, i.e. the bisector of the chord between them.

Figure 1 shows the justification for this approach. Points A and B are locally
symmetric because the angles between their normals and the chord which joins
them are equal. A and B are also vertices of an isoceles triangle with point
0, the intersection of their two normals. As the sides AO and BO of the
triangle are equal, any messages sent simultaneously from A and B along their
inward normals will reach 0 together and thus signify that A and B are locally
symmetric about the point S, the bisector of the chord between them.

2 The Adapted MIMD Algorithm
The key to efficient computation on MIMD architectures lies in the judicious
decomposition of the problem. In particular we should divide the problem such
that communication and synchronisation overheads are minimised.
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Synchronisation requirements can be reduced if each pixel is considered a bin
into which data is dropped by overflying messages. Two pieces of information
are deposited, the distance the message has travelled and its origin. After all
messages have propagated across the shape the bins are inspected for equal
distances signifying a local symmetry. The advantage of this approach is no
globally synchronised signal is required.

Data transfer reduction also depends on task decomposition. We could give
each node a copy of the whole shape and a unique portion of the boundary
from which to propagate messages as shown in figure 2. This would require
local copies of bins on each transputer, bin contents would have to be pooled
using large data transfers.

A better way to split up the problem is to give each node a complete copy of
the boundary, but only have them propagate within small and disjoint intervals
along all the normals. For example, node one propagates from 0 to 5 pixels along
all the normals, node two propagates from 5 to 10 pixels, etc. Note that nodes
do not repeat processing performed by other nodes, they jump immediately to
the lower bound of their interval by use of real arithmetic. There is no need for
inter-node communication as all possible local symmetry points, ie with lengths
of the same order, are contained on the same node.

Figure 2 shows this new decomposition leads to a reduction in the total
computations performed. Messages from Transputers A and B cross at O and
thus are potentially locally symmetric. However this is not the case as the mes-
sages have travelled greatly different lengths. Using boundary decomposition
we still take time to consider and discard them. The new interval decomposi-
tion method only considers intersecting normals of similar lengths. This effect
becomes more pronounced as processors are added to the array.

Rotational Symmetries can also be detected. Messages propagated from
a circular arc reach the centre together swamping the finite capacity of the
Connection Machine processors. This is not so on a MIMD architecture which
can allocate voting space dynamically. Note however Brady uses Fleck's criteria
for rotational symmetry [7] and can thus cope with "near circular" shapes.

3 Implementation and Results

The MIMD architecture used for the implementation of the algorithm was an
array of twelve T800 Transputers connected to a host Sun workstation via a
T414. Test images from the host were preprocessed on the T414 including
Canny edge detection, edge linking and boundary tracking. The message prop-
agation and "voting" was carried out on the main array before uploading to
the host for display.

In figure 3 we can see the results of applying the algorithm to a square and a
"T" shape, all the axes of symmetry are present. Figure 4 shows a comparison
of the SLS and the Symmetric Axis Transform (SAT). The SLS does not distort
axes when new features such as a notch or occluding object are added as the
SAT does. This is an important property when the SLS is used for object
recognition.

Figure 5 shows a poor SLS for a wrench where only the main axis is picked
out. Problems include noise giving errors in normal angle and position, normals
of similar origin and angle give multiple SLS points and normals can cross but



365

not vote in same bin thus missing like bishops on a chess board.
Results were improved by propagating normals across a real grid rather

than a discrete one. Pixel boundaries were considered real lines and messages
recorded entry and exit of pixels where the line was crossed, thus intersections
of normals could be deduced to sub pixel accuracy.

We suggest a scale based regional representation could be produced by in-
corporating information from the Curvature Primal Sketch of the SLS [1].

4 Discussion and Conclusions

The new algorithm's use of "voting" relates it to the Hough Transform for
circle detection [2]. Figure 1 shows SLS boundary points are tangents to a
circle and intersecting normals vote for the centre of this circle. The algorithm
is also related to a number of shape description methods based on propagation
of waves or particles from boundaries [8] and this algorithm coupled with a
MIMD architecture could form a general basis for their computation.

We have shown an efficient adaptation of Brady and Scott's algorithm for a
MIMD architecture is possible using the new interval decomposition method. In
addition rotational symmetries can be computed simultaneously with a single
analysis of the shape. Further details can be found in [9].
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Figure 1:
Geometry of a Local Symmetry Figure 2: Propagation of Normal Vectors

Figure 3: SLS of Square and Tee

Figure 4: SLS and SAT of Rectangle and Rectangle with Notch

Figure 5: SLS of Wrench


