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Abstract

We compare two well known methods of computing with uncertain
quantities as used for geometric reasoning in robotics and computer vi-
sion. One method is based on intervals, the other on normal probability
distributions. We find the latter method is better, in terms of both speed
and accuracy.

1 Introduction

One of the key problems in sensor fusion and computer vision is finding out
where things are. This is usually done by relating sensed geometric features
to to features describing what is known a priori (a map of the environment or
some object models). The problem is often referred to as geometric reasoning.

In practice geometric reasoning involves dealing with quantities whose val-
ues are uncertain because they rely on imperfect sensor measurements. Indeed,
the two major approaches to geometric reasoning can be distinguished by the
way in which they represent and manipulate errors. One method, originating
with Brooks [4] and later refined by Fisher and Orr [7], represents uncertain
numerical quantities as error intervals. The computations performed in this
method are based on interval arithmetic [1] and, in Fisher and Orr's version,
take place in a parallel network. In the other method, which seems to be more
popular [8, 5, 3, 2, 6], uncertainty parameter vectors are represented by normal
joint probability distributions and the main computation tool is the Kalman
filter.

A typical example is the matched directions problem: a pair of 3-D direction
vectors measured imprecisely in one reference frame coorespond to another pair
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in some other reference frame; what is the rotation between the two frames?
In this paper we compare the above two methods for speed and accuracy using
this example.

2 Computing with Intervals

Solving a particular geometric problem using intervals starts with the compila-
tion of constraints on error bounds from the equations that would describe the
problem if everything was known precisely (see [7] for details). For example
suppose x is related to a and b by x = a — b. In that case, it follows that
the upper bounds (suprema) and lower bounds (infima) of the corresponding
intervals are related by

sup X < sup A — inf B,

inf X > inf A — sup B.

For more substantial problems, such as the problem of matching two pairs
of directions, the constraints are more complicated but can be compiled auto-
matically by an off-line process. Whenever the on-line program is posed with a
particular problem, it instantiates values for the known parameters in the ap-
propriate set of compiled constraints and then uses them to tighten the bounds
on the unknowns as much as possible. An iterative process gives tighter bounds
because of cross-dependencies and recursion amongst the constraints.

In the experiments described below we used Fisher and Orr's network im-
plementation [7]. Using a quaternion representation for rotations, their basic
equations for the matched directions problem were

Vi*q = q*Ui, i = l , 2

where ui and 112 are the model (unrotated) directions, v^ and \^ are the
data (rotated) directions, q is the unknown quaternion and * is the (non-
commutative) quaternion multiplication operator.

3 Computing with Probabilities

In this method the analysis is centred on a measurement equation or sensor
model involving an observation vector, x, and a state vector a as arguments to
a function f satisfying f(x, a) = 0. The uncertainty associated with states and
observations is represented by variance-covariance matricies and state estimates
can be generated from observations using an estimation tool such as a Kalman
filter. For most practical problems, including the matched directions problem,
the function f is non-linear, and extensions to the basic linear tools are required.
For our experiments we used an Iterated Extended Kalman filter [3, 2].
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In the matched directions problem there are two observations, each consist-
ing of the concatenated components of one of the pairs of matched directions:
x,- = [u\ v]f, i = 1,2. For the state, a, we used the exponential rotation
parameterisation, r [6] constructed by multiplying the rotation axis by the
rotation angle. The sensor model is thus

f(Xi,a) = f([u|vj]',r) = v,- - eHu< = 0, i = 1,2

where H is the anti-symmetric matrix

H =

4 Experiments

The basic experiment we did was to try both methods on many random exam-
ples of the matched directions problem. Each random example was generated
by the following steps: 1) choose a random rotation and express it in the form
of a matrix R, 2) choose random directions ux and u2, 3) compute rotated
directions vi = Rui and v2 = Ru2, 4) corrupt all four directions with noise of
magnitude e.

Each direction was corrupted by first adding to it a vector of independent
zero-mean Gaussian noises of variance e2 and then renormalising the result
to be of unit length. In the case of the interval based method, the intervals
used were centred on the corrupted vector components and of half-width \/3e
(ensuring a variance of e2). The output from the interval method was arranged
to be in the form of a vector x^ of mid-range values for the components of
the exponential form of the solution (converted from the quaternion) along
with a vector s '^ of interval half-widths (after dividing by y/Z). The output of
the probability method was a vector r(p) of mean values and a vector s ^ of
standard deviations from taking square roots of the variances in the uncertainty
matrix.

To compare each method's estimate of its own accuracy we directly com-
pared the uncertainties s(J) and s^p). We also computed rotation matricies

(7) and R(p) from the estimates v^ and r^ and with them the costs

||v2 - R ( p )u2 | | .

5 Results

We found that, on average, the components of s^), the vector of interval widths,
were about 100 times larger than e, whereas the components of s^p\ the vector
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of standard deviations, were only 2 to 3 times larger. Thus the probabilistic
method produces a much more constrained solution. This is the most striking
difference between the two methods and is probably explained by the extra
information carried by covariance terms in the uncertainty matrix.

The size of the ratio c^/c^ varied between 1 and about 100 but was
usually small (less than 2 in the majority of cases). Thus we found that r ^ )
was always a better solution than r O but often only marginally.

The interval method is much slower to compute. The comparison depends
on two thresholds: the minimum change of the error bounds which terminates
the network iterations, and the minimum change in the state vector which
terminates the iterations of the Iterated Extended Kalman filter. However the
dependency is not great for reasonable choices of these thresholds. We used
0.001 for each threshold and in this case the interval method was about 50
times slower than the probabilistic method.

In conclusion we find that the method based on probabilities 1) produces
significantly better uncertainty estimates, and 2) produces better mean esti-
mates, 3) is significantly faster.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Aca-
demic Press, UK, 1983.

[2] N. Ayache and O.D. Faugeras. Maintaining representations of the environ-
ment of a mobile robot. In Robotics Research 4, pages 337-350. MIT Press,
1988.

[3] Y. Bar-Shalom and T.E. Fortmann. Tracking and Data Association. Aca-
demic Press, UK, 1988.

[4] R.A. Brooks. Symbolic reasoning among 3-d models and 2-d images. Arti-
ficial Intelligence Journal, 17:285-348, 1981.

[5] H.F. Durrant-Whyte. Uncertain geometry in robotics. IEEE Journal of
Robotics and Automation, 4:23-31, 1988.

[6] O.D. Faugeras. A few steps towards artificial 3-d vision. In M. Brady,
editor, Robotics Science. MIT Press, 1989.

[7] R.B. Fisher and M.J.L. Orr. Geometric reasoning in a parallel network.
International Journal of Robotics Research, 10(2):103-122, 1991.

[8] R.C. Smith and P. Cheeseman. On the representation and estimation of
spatial uncertainty. International Journal of Robotics Research, 5(4):56-68,
1986.


