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This paper reports a method for automatically constructing a relational model
of a rigid 3D object, to represent view-independent relations among its
component parts, and of using such a model to recognise the object from
single monochromatic images. The relational model is a graph associated
with procedural constraints. It is constructed by a statistic analysis of images
generated by projecting a CAD model of the object from a set of viewpoints
on the Gaussian viewsphere. Object recognition is achieved by a hypothesis-
and-verification process. Extended hypotheses are generated by aggregating
image features which satisfy the view-independent constraints. These
hypotheses are then verified by projective inversion and 3D grouping to
achieve object recognition.

We illustrate the approach by means of the recognition of a hatchback
model car. The method can readily be adapted to the recognition of any object
defined geometrically.

1. Introduction

There has been a long history of using relational models in object recognition. Relational
models capture an object, independent of its pose, so are especially suitable for
recognising complex objects in unknown environments. However, this kind of model (e.g.
[2,7]) has usually been constructed manually, and this severely limits the practical
application of relational models in object recognition. This paper discusses the problem
of automatically constructing a relational model of an object and its use in object
recognition. The aim of this work is to develop a vision system which accepts as input a
CAD wireframe model of an object and single monochromatic images of the object within
an unknown environment, and produces as output a model instance of the recognised
object superimposed on the image. No a prior information about the location or
orientation of the object relative to the viewer is used, other than to assume that the
viewpoint is within 60° above the horizontal.

Prior to the recognition process, a relational model of the object is built off-line, based
on the wireframe model. The model is a graph associated with procedural constraints. The
nodes of the graph are 3D component parts (model features) of the object. These can be
associated with groups of image features defined by simple 2D geometrical attributes. A
co-visibility constraint for model features is represented by means of an arc of the graph.
Other pairwise view-independent relations are represented as constraints associated with
these arcs. This relational model is then used to identify extended groups of 2D image
features and to form hypotheses about the object without invoking explicit pose
information in the matching process. Finally the hypotheses are verified by perspective
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inversion to achieve object recognition. The recognition process is closely related to the
work of Lowe [6], Goad [5], and Flynn & Jain [4].

2. Relational Model

Fig.l(A) shows a wireframe model of a hatchback model car, comprised of 22 model
features, which in this study were identified manually, to be used for object recognition.
Model features are either single isolated lines or clusters of lines forming windows.
Fig.l(B) shows a small part of the graph representation of the relational model of the
object (representing the six windows of the car) constructed from the wireframe model.
Each arc of the graph is associated with procedural constraints representing simple
relations between the corresponding model features, chosen to be largely independent of
view.

(a) Nearside Rear View

(b) Offside Front View

(A) (B)

Fig. 1. Geometrical (A) and relational (B) models of a car

To build the relational model, the object is examined from many different viewpoints
to collect statistical data about relations between pairs of components of the object. Five
relations: co-visibility, colinearity, parallelism, side relation, and relative size are analysed
and quantitative measures of these relations are defined.

As an example, we define the measure for colinearity by a co-line ratio as follows.
Given two line segments ab and cd (assuming that ab is longer), as shown in Fig.2, we
construct a minima] rectangle whose long axis is parallel to ab and encloses ab and cd.
Let w be the length of the side of the rectangle parallel to ab, h be the length of the
perpendicular side of the rectangle, and 9 be the angle between the two line segments. The
quantitative measure of colinearity between the two line segments is defined as:
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colineratio(ab,cd) = (1 — —) cos0]

This heuristic provides an acceptable measure (between 0 and 1) for the concept of
colinearity between two line segments.

Fig. 2. Quantitative measure of colinearity between two line segments

Similarly, for any pair of line segments, we define a parallel ratio between 0 and 1 to
express the degree of parallelism. The larger the parallel ratio, the more closely parallel
are the two line segments. For a pair of features {a, b}, the side relation is represented by
a tri-value function recording if a is to the right or left of b or they cross. Relative size is
quantified by the ratio between the lengths of two features. Relations between compound
features (e.g. quadrilaterals) are assessed by the relations between their component parts.
Details of quantitative definition of these relations are omitted here due to space
limitations.

From each viewpoint we construct an image of the wireframe model of the object and
measure the selected relations (both visibility and geometrical constraints) among pairs of
model features from that viewpoint. For the 22 model features, there are 231 pairs of
features and therefore 1155 pairwise relations to be measured from each viewpoint. These
data are subsequently examined to select those relationships which provide a view-
independent description of the object.

2.1. Sampling the Viewsphere

We restrict our work to recognising cars in normal views (0°-60° from the horizontal). The
surface of the Gaussian viewsphere is sampled randomly to select n (typically 500)
viewpoints. The wireframe model of the object is inspected from each viewpoint to
generate n sets of model features projected as 2D line segments. The measured relations
between each pair of features from each view are stored to provide a statistical description
of the relations between the features. This approach differs from the traditional aspect
graph (e.g. [1,2]) in that the relational model involves no aspect information. This greatly
simplifies the hypothesis generation process.
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2.2. Building the Co-visibility Graph

The co-visibility of a pair of features is represented by the connectivity of the graph. Two
model features {or oj are deemed co-visible if both the conditional probability of
detecting o, while o, has been detected, and that of detecting o, while o; has been detected,
are larger than a threshold a. The conditional probabilities can be calculated by comparing
the numbers of viewpoints from which o,. or Oj or both can be seen. If {oh Ojj are co-visible
an arc is established between them. Each arc of the graph is weighted by the conditional
probability of co-visibility, and associated with procedural constraints representing view-
independent geometrical constraints on the corresponding model features. Using a equal
to 0.4 (i.e., arcs connect component that are both visible in at least 40% of the views from
which either is visible), the number of arcs of the graph is 107.

2.3. Selection of Relational Constraints

The purpose of this stage is to identify those relations which would provide useful
constraints on the hypothesis generation, or graph matching process. The principle is that
if a measured relation is usually concentrated around a constant value, this relation is
deemed to be independent of view, so that the constraint is useful in object recognition.

If two model features (or o ĵare deemed co-visible, we evaluate the four quantitative
measures between them. For each of the relations, if there are n, viewpoints from which
both features can be seen, we have n; values of the relation between the two model
features. These measurements give an estimate of the underlying probability distribution
associated with this relationship between the feature pair.
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Fig. 3. Parallel ratios between feature pairs

As extreme examples, Fig. 3 shows the distributions of the parallel ratios between
model features {ou, nsillj (the offside windscreen upright and the nearside sill) and {nr,
nsillj (the nearside roof and the nearside sill). Black curves show the probability density
functions (pdf) p(t) of the variable, the dotted curves show the cumulative pdf, that is,

f{x) =
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We can see that the parallel ratio of {ou. nsillj is widely distributed between [0,1]
whereas that of jnr, nsill] is concentrated in the range from 0.8 to 1. The latter is accepted
as a useful view-independent constraint on the feature pair.

More generally, let mp be the mean value and ap be the standard deviation of the
relational measure between s,- and Sj (the projections of model features o, and o;) and let ep

be the expected value when this relation is exact (for parallelism and colineanty, this is 1,
for side relation this is either 1 or -1, for relative size, this value is substituted by mp so the
first expression in the following is satisfied automatically). If

where e ; and o1 are pre-set thresholds, the relation between o, and o; is deemed as holding
generally over all possible views.

This selection process was applied to 428 relations (4 for each of the 107 pairs of co-
visible features). With the current set of thresholds used, there resulted a total of 171
useful constraints: 43 parallel constraints, 21 co-line, 72 side relation, and 35 relative size.
The numbers of constraints generated in the model building process are dependent on the
thresholds selected for the model generation. Such thresholds are inevitable with any
recognition problem, and must be determined by experience. However, the influence of
these thresholds on the final recognition are not dramatic since the relational model is
designed to group 2D features into hypotheses which are then subjected to further
evaluation. Minor changes in the relational model lead only to small changes in the time
used for hypothesis generation and in the later assessment of the hypotheses generated. In
our experiments, we have found that small changes of thresholds have little effect.

These relations provide procedural constraints which are attached to the corresponding
arcs in the graph to form a relational model of the object. This model provides a set of
weak constraints on model feature which can be used to aggregate 2D image features to
generate a small number of reliable hypotheses about the location, orientation and size of
the object. The time used for generating this relational model is significant (approximately
one and half hours on a Sun4, using code written entirely in popll) and is linearly
dependent on the number of viewpoints selected. However, this model is compiled off-
line and once built, it can be used to recognise any image of the object.

3. Feature Extraction

We use a heuristic approach to extract compound features from an edge map, derived
using the method of Canny [1]. The features extracted from the image are line segments,
U-shaped curves, and quadrilaterals. Details of the general approach has been given in [9].

4. Hypothesis Generation

A hypothesis is a group of pairings of 2D image features with 3D model features.
Necessary conditions are that (1) all the model features in the group constitute a clique of
the graph which is mutually view-consistent and (2) image features in the group as a
whole satisfy all the procedural constraints concerned. In order to generate such
hypotheses, features extracted from the image are matched against model features. To
minimise the time used in hypothesis generation, we use a method employing best-first
search, island-growing and early termination of the search. In our experiments, about 10
hypotheses satisfying the above criteria are typically generated by the search.
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5. Hypothesis Verification

The hypotheses are subjected to further verification by model-projection followed by 3D
grouping. For each hypothesis generated, we find the approximate location and
onentation of the camera by a table look-up approach [9]. The CAD wireframe model of
the instantiated object is then projected back into the image plane. Further image features
are accepted which match the projected model line segments. If the matched image
features exceed a pre-set threshold, the hypothesis is accepted and the object recognition
is achieved, otherwise the hypothesis is rejected.

6. Results

Initial experience shows that the method proposed here works well. Fig. 4 shows the
various stages of applying the method to a typical image. Owing to the noise in feature
extraction and the resolution of the table look-up used in recovering the pose information,
the model instances obtained have small displacements from the true position. This can
be refined by using iconic evaluation, similar to that of Worrall [8] (to be implemented).

Image

(a)

(b)

(c)

(d)

(e)

(f)

Number of
Correct

Hypotheses

2

3

4

2

3

4

Number of
Incorrect
Hypotheses

8

10

12

10

7

7

CPU Time Used
for Hypothesis
Generation

2.23

2.42

2.59

1.90

2.08

2.45

CPU Time Used
for Selecting

Correct Hypothesis

1.95

2.10

3.01

2.05

2.12

2.59

Table 1. Summary of the Recognition Process of the Images in Fig. 4
Running on Sun4.16 MB, times are shown in minutes

We have applied the relational model to 15 images from which reasonably reliable
features are extracted. Fig.5 shows results of our approach on 6 of these images. A
summary of the results is shown in Table 1. The numbers of features extracted from these
images range from 120 to 285. In all the images at least one correct hypothesis is
generated, together with typically fewer than 10 other incorrect hypotheses (ansing either
from clutter in the background or mislabelled objects). Experiment shows that this
approach can generate the model instances fairly quickly (about two minutes, on a Sun 4
using popll, for each of the two stages of (1) generating hypotheses and (2) selecting
correct hypotheses from all the hypothesis generated) given that the original edge features
have been extracted. No effort has been made at this stage to implement the code
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efficiently. The underlying qualitative nature of this relational model makes it possible to
recognise occluded objects, Fig. 5(f), or multiple objects in a scene, Fig. 5(c).

The approach discussed here can easily be used to recognise different objects.
Currently we are working towards recognising other types of vehicles (Estate, Saloon,
Van, etc). A drawback of this approach is that it relies closely on being able to find at least
one 2D grouping of edges (e.g. quadrilaterals or U-shaped curves) and, in common with
all model-based approaches, on the accuracy of features extracted. The only instances of
failure we have encountered are in images where the feature extraction was obviously
deficient.
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(a,) Original image (b) 2D features

. ^ ' ^ % v ^ $£%&&:

(ej 3D grouping (f) Model instance on the original image.

Fig. 4. Various stages of the recognition process
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. 5. Model instances superimposed on a representative set of original images


