
Synthetic Images of Faces -
An Approach to Model-Based

Face Recognition

Andrew C. Aitchison and Ian Craw
Department of Mathematical Sciences, University of Aberdeen,

Aberdeen AB9 2TY, Scotland

Abstract

We present a method of generating realistic views of the head of any
individual from a single photograph of the individual and a generic model
of a human head.

The generic model is distorted so that it projects correctly onto the
photograph. This is done by finding the least energy position of a spring-
frame model, some of whose vertices are constrained to lie on particular
features in the photograph.

This gives us a model of the individual, which is then texture mapped
using the original photograph to generate the final view. This is perceived
to be a realistic view of the individual, even if the model is quite crude.

1 Introduction

Model-based vision depends upon having models which describe the class of
objects being sought. For simple geometric machined parts it is not hard to
generate suitable parameterised 3D models, but natural objects such as human
heads are more difficult to model.

Parke was the first to describe and implement a parameterised face model
[1]. Waters [2] and Patel and Willis [3] both describe detailed face models
which are can show a wide range of expressions. The images generated by
these all models, impressive as they are, are not convincing images of any
individual, principally because they are lacking in surface detail. Yau and
Duffy [4] generated realistic views of individual people by texture mapping a
photograph of a person onto a carefully constructed '2|-dimensional' model of
the front of that person's head. They required a different model for each person
they wished to draw.

We use a 3-dimensional model of the whole head. However this need not
be a model of any particular individual - it is sufficient that it gives a good
description of the general head. For this reason it is known as the generic head
model.

2 The Generic Head Model
The generic model is defined using a triangulation, a wireframe model made en-
tirely of triangles. This is one of the simplest representations for a 3-dimensional
object.

BMVC 1991 doi:10.5244/C.5.29



227

We have a wireframe model of an individual's head, made up of nearly
10000 points around the head. This was constructed by Linney [5] at Uni-
versity College Hospital, London by vertically scanning a laser range-finder up
and down the face of a volunteer's head while she was seated on a rotating
platform. This model is known as Vicki after the subject. It is too detailed
for our purposes - 1000 triangles would be plenty - so we decided to build an
approximation to it using only a subset of the vertices.

There are at least two approaches we could take in approximating a 3-
dimensional triangulation such as Vicki. Both methods aim to find a trian-
gulation with as few triangles as possible while ensuring that the error in ap-
proximating the original is below a given threshold. To use either method to
generate a triangulation of a given size we must make several approximations
at different thresholds, until a triangulation of an acceptable size results.

2.1 Faugeras' Algorithm
Faugeras et al. [6] describe an algorithm which generates a triangulation ap-
proximation to a given wireframe model of a 3-dimensional surface. The vertices
of the approximation are all vertices of the original wireframe. The first approx-
imating triangulation is just two triangles back to back. This approximating
polyhedron is iteratively improved by adding more vertices of the original wire-
frame, until the approximation is sufficiently accurate everywhere.

At each step the wireframe is divided into regions as follows. For each tri-
angle in the polyhedron find the shortest path on the wireframe between each
pair of the triangle's vertices. The triangle is then used as the current approxi-
mation to all the vertices within these bounds. The approximating polyhedron
is improved by repeatedly dividing each triangle into three new triangles by
adding a new vertex from the corresponding region of the wireframe. The
vertex added is the one which is furthest from the current triangular face.

Since an edge could occur in the polyhedron which was a poor approxima-
tion to the wire frame, a refinement is made to the approximating polyhedron
after each step. Each adjacent pair of triangles is split into four by adding
the vertex lying along the common edge of the approximated regions which is
furthest from the common edge of the triangles.

This gives good approximations for machined parts, but the results are not
very good for our heads. The problem is that while the new triangulation is a
good approximation of the original points it is not always a good approximation
of the original surface.

2.2 A Point-Removing Algorithm
We therefore tried the alternative approach - start with the whole model and
remove vertices one at a time until no more can be removed without making
the approximating error too large. Several variations on this approach have
been tried. We will only describe the one used to generate the current generic
head model.

We cannot forget about a vertex once it has been removed, since removing
another vertex may remove the triangle that it was closest to. Whenever we
remove a vertex we must find the new triangle which it is closest to, and indicate
it as such. Therefore each triangle has a list of vertices which it approximates.



228

It would be terribly inefficient to calculate the error in approximating each
vertex of a large given triangulation before determining whether we may remove
a single vertex. Fortunately we don't need to. Removing a single vertex v from
a triangulation T is a local operation - the new, reduced, triangulation will only
differ from T in a neighbourhood of v. The triangulation of this neighbourhood,
which is a subtriangulation of T, is just the union of the triangles which have
v as a vertex. We call this the neighbourhood triangulation. We split T into
two: the neighbourhood triangulation and the complementary triangulation -
the complement of the neighbourhood triangulation in T. We now form the
reduced neighbourhood triangulation by removing the vertex v. Finally we form
the reduced triangulation by taking the union of the reduced neighbourhood
triangulation with the complementary triangulation. This is the triangulation
T with the vertex v deleted.

Assuming that T is an acceptable approximation to the given triangula-
tion, the reduced triangulation will be acceptable if it is a sufficiently good
approximation to all the vertices of the given triangulation which are best ap-
proximated in T by a triangle in the neighbourhood triangulation. This will
certainly be true if the error in approximating each of these vertices by the
reduced neighbourhood triangle is sufficiently small. Thus we can determine
whether removing a vertex will result in an acceptable approximation to the
given triangulation, without calculating the reduced triangulation. Neither do
we need to calculate the error in approximation of all the given vertices. It is
sufficient to calculate the reduced neighbourhood triangulation and the error in
approximating the removed vertex and those vertices of the given triangulation
which are approximated by triangles in the neighbourhood triangulation.

We now give the outline of the algorithm. To find a triangulation T which
approximates triangulation T such that the error in approximating each vertex
of T is at most e, and T has as few vertices (and hence triangles) as possible:

• Set To = T. No triangle in To approximates a vertex yet.

• For n — 1, . . . , number of vertices in T do:

1. Choose a vertex vn of Tn-\ that has not already been chosen.
2. Split Tn into two triangulations: 7Vn the neighbourhood triangula-

tion of vn, and Cn, the complementary triangulation.
3. Remove vn from Nn and form a new triangulation Rn.

Clear the lists of vertices approximated by each triangle in Rn.
4. Let ApproxVerts — list of all vertices approximated by triangles in

Nn, plus vn.
Let WorstError = maximum of all the errors in approximating ver-
tices in ApproxVerts by the triangulation Rn.

5. If WorstError > e then
- set Tn = Tn_!

else
- set Tn = Cn + Rn

- for each vertex in ApproxVerts find triangle in Rn which this
vertex is closest too, and add it to the list of vertices this triangle
approximates.



229

• Tn is the desired approximation. •

Our current generic head is a wireframe triangulation made up of around
5000 triangles and 2500 points.

3 The Specific Head Model
The generic head gives us a 3D description of the shape of a human head. We
tune this to match the head of the individual in the photograph by moving
the vertices appropriately. Each vertex of the model represents a point on the
surface of a human head, and should be moved so that it matches this point
when the model is projected onto the plane of the photograph.

We do this in three stages. A global transformation roughly matches the
heads. Some of the points are then found on the photo, and depth values for
these vertices are derived. The remaining vertices are found by interpolation.

3.1 Globally Matching the Model to the Photograph

First, a global affine transformation is applied to the model so that its general
size and orientation matches the head in the photograph. The model is rotated
to match the orientation of the head in the photograph, and shrunk or enlarged
horizontally and vertically until the height and width match also. The depth
is then scaled so that it remains in proportion to the first two directions. This
scaling may involve different scale factors in each direction as some people have
longer, thinner faces than others.

3.2 Finding Points on the Photograph

Once we have transformed the generic head model globally the individual ver-
tices are moved locally to produce the specific model triangulation. It would
be impractical to find the positions of a thousand or more vertices on the pho-
tograph manually. Instead we define a smaller set of the most important, or
major, vertices. The positions of the points represented by these major vertices
are found directly from the photograph. Ideally this is done using the feature
finding systems developed by researchers at Aberdeen [7, 8], but they could be
found relatively easily by hand if necessary. The positions of the remaining,
minor, vertices are found by interpolating between the major vertices. Individ-
ual major vertices can be 'demoted' to minor vertices if they cannot be found
on a particular image.

Each vertex of the specific model has three components, two in the plane
of the photograph, and one, the depth, perpendicular to this plane. The two
components in the plane of the photograph are just the components of the
position of the corresponding point in the photograph. This ensures that the
vertices of the specific model match their respective points when projected onto
the plane of the photograph.

Since the general shape and size of the scaled and rotated generic model
and the head in the photograph match in at least their grossest form, it seems
reasonable to use the depth component of the scaled generic model, without
further modification, as the depth component of the specific model. The generic



230

head was introduced especially to give the system knowledge of the shape of
human heads. This knowledge will always be available and will, we believe,
usually give good results. It is likely to fail only when the individual is markedly
different from the norm represented by the generic head. For example a front
view of a person will give little indication of the size of their nose.

3.3 Interpolation
Finally the positions of the minor vertices are found by imagining each edge of
the model to be a spring. These springs all work in tension and in compression
and have the same stiffness e. The spring lengths are chosen so that if no
external forces are applied the spring model takes up the shape of the globally
transformed model.

The major vertices are fixed in their desired positions, and the model is
then allowed to reach equilibrium. This least-energy position is our final model
for the head of the person in the photograph.

The equilibrium position of the spring model is found using the following
iterative algorithm. I make no claims for the stability or efficiency of this
algorithm, but merely report that it works.

Apply global transformation to model.
Calculate rest length of each spring.

Spring with ends at vertices i and j has rest length
Lij = I vj - v; j
where v,- is position of vertex i.

Displace major vertices to desired positions on photo.
repeat

for each vertex v*
Force at v,- towards v, caused by connecting spring:

Displace vertex v,- in proportion to the total force acting upon it.
endfor

until total displacement in one step is sufficiently small.

As an extension, instead of fixing a major vertex to a particular location we
could allow it to travel along a fixed wire. This might be appropriate when we
know the outline of the head in the photograph but do not know exact positions
of the major vertices which lie along it.

4 Display
We now have a 3D model of an individual and a photograph of the same person
in which the vertices of the model are located. The model can easily be rotated
to give the impression of viewing from a new viewpoint. It should also be
possible to distort the model further, to change the expression of the face,
perhaps changing a smile into a frown, or shutting an eyelid, while keeping the
particular shape of the subject's head.

We then display the specific head, using the original photograph to provide
colour and texture information, so that the head looks like the person in the



231

photograph. This is called texture mapping. We implement this by considering
the triangles which make up the model, one at a time. The corners of each
triangle are vertices of the model so we have been given or have interpolated the
position on the photograph which each corner represents. We find the position
of each corner on the displayed image by applying the viewing transformation
to each vertex. This gives us the position of the corner in the viewing plane,
and its depth relative to this plane. We now have two triangles, one on the
photograph and one on the viewing plane. For 2 triangles with identified corners
(as these are) there is a unique affine mapping from one to the other. We use
this mapping to copy the pattern from the first triangle onto the second. We
ensure that parts of the model which are obscured by nearer parts are not
displayed, by using a z-buffer hidden surface removal algorithm. This triangle-
based texture mapping has also been used successfully to distort 2 dimensional
faces. In particular Phil Benson [9] has used the same technique to generate
photographic quality caricatures for psychological experiments.

Figure 1: Applying the method to the left image gives the right image.

5 Applications
In their work on eigenfaces, Craw and Cameron [10] found that reconstruc-
tion was greatly improved by standardisation. This is just a 2-dimensional
texture-mapping onto an average face. Eigenfaces have also been used for face
recognition (see [11]). It would be useful to recognise faces seen through secu-
rity cameras. Typically these are mounted high up and look down on a face
at a significant angle - unlike the full-face images used in current recognition
work and the photo-ids many of us carry today. Our system would facilitate
the conversion between these views.

If we can generate synthetic views of a real person, what about creating
imaginary people ? If we take the average of the models of two people and
the average of the textures we get a realistic picture of the average person. If
we take several weighted averages we get a smoothly flowing sequence which
starts with one person and finishes with another. Each still frame looks like a



232

photograph of a person. The sequence shown at BMVC last year was generated
this way.

6 Acknowledgements

The first author would like to thank British Telecom, Martlesham Heath and
the SERC for the CASE studentship under which this work was done.

References

[1] Frederic I. Parke. Parameterized models for facial animation. IEEE
CG&A, pages 61-68, November 1982.

[2] Keith Waters. A muscle model for animating three-dimensional facial ex-
pression. Computer Graphics, 21(4):17-24, 1987. Proc. ACM SIGGRAPH
'87.

[3] Patel and Willis. Faces: Facial animation, construction and editing system.
In EUROGRAPHICS '91, Vienna, September 1991.

[4] Neil D. Duffy and John F. S. Yau. Facial image reconstruction and manip-
ulation from measurements obtained using a structured lighting technique.
Pattern Recognition Letters, 7(4):239-243, April 1988.

[5] Alf D. Linney. The use of 3-D computer graphics for the simulation and
prediction of facial surgery. In Vicki Bruce and Mike Burton, editors,
Processing Images of Faces. Ablex, Norwood, NJ. To Appear 1991 ?

[6] O. D. Faugeras, M. Hebert, P. Mussi, and J. D. Boissonnat. Polyhedral
approximation of 3-D objects without holes. Computer Vision, Graphics
and Image Processing, 25:169-183, 1984.

[7] David Tock, Ian Craw, and Roly Lishman. A knowledge based system for
measuring faces. In BMVC90 Proceedings of the British Machine Vision
Conference, pages 401-407, University of Oxford, 24-27 September 1990.
British Machine Vision Association.

[8] Alan D. Bennett and Ian Craw. Finding facial features using deform able
templates and detailed prior statistical knowledge. In this volume.

[9] P. J. Benson and D. I. Perrett. Perception and recognition of photographic
quality facial caricatures: Implications for the recognition of natural im-
ages. European Journal of Cognitive Psychology, 3(1), 1991.

[10] Ian Craw and Peter J. Cameron. Parameterising images for recognition
and reconstruction. In this volume.

[11] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of
Cognitive Neuroscience, 3(l):71-86, 1991.


