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Abstract

Image features pertinent to weld defect detection and identification are extracted
from a digitised radiograph image of the weld. These image features form the
set of visual evidence which is brought to bear upon a set of possible defect
hypotheses. The Dempster-Shafer theory is applied to combine these visual
evidence and obtain a belief interval for each of the defect hypotheses. The
system is capable of assessing the validity of the result of the identification by
considering the degree of conflict in the body of the evidence.

1. Introduction

This paper presents an approach to weld defect identification based on the
accumulation and combination of visual evidence extracted from a radiograph image
of the weld. Uncertainties in machine inspection of radiographs arise as a result of:
(a) uncertainty in the detection of a specific visual evidence due to possible errors in
the image segmentation and feature extraction processes; (b) uncertainty in the
conclusions that should be drawn from the evidence. The Dempster-Shafer theory
provides a mathematical basis for combining evidence which has been brought to
bear upon a set of hypotheses and for reasoning under uncertainties [1,2].

1.1 Dempster-Shafer Theory

Within the framework of the theory, the set of all possible hypotheses within the
problem domain is called the frame of discernment, or 0. Hypotheses within 9 are
mutually exclusive and exhaustive. A piece of evidence can be brought to bear upon
one or more subsets of 9 . Furthermore, each piece of evidence x has associated with
it a mass function m (H) which expresses the degree to which the evidence supports
or refute a hypothesis H. The mass function has a range of [0,1]. The total degree of
belief on a hypothesis as a result of pooling several pieces of evidence can be
computed using the Dempster's rule:

mab(H) = K . E ma(P).mb(Q)
b PHQ=H b (1)

K = 1 - E m (P) . mb(Q)
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where mab(H) denotes the amount of belief mass assigned to hypothesis H as a result
of combining two pieces of evidence, a and b; and K is a normalisation term which
ensures that the total mass assigned to the focal hypotheses and 0 summed to 1, and
that the mass assigned to the empty set is zero. The subsets of 9 to which the mass
function assigned non-zero mass are called the focal hypotheses of the evidence.

1.2 Belief Functions and Belief Interval

A belief function denoted Bel(H) measures the degree to which the available
evidence directly supports the hypothesis H. This is expressed as the sum of the
mass assigned to H and all its subsets, ie.

Bel(H) = E m(h)
h H (2)

The plausibility of the hypothesis H, Pl(H), which is the degree to which the
available evidence fails to disconfirm H can be expressed as

P1(H) = 1 - Bel("H) (3)

The belief interval for a hypothesis H is given by

[Bel(H),

which represents explicitly the support and plausibility of a proposition H. The belief
interval [1,1] and [0,1] indicates complete certainty and complete uncertainty of the
hypothesis respectively.

2. Visual Evidence Elicitation in Weld Defect Identification

A set of visual cues which can be derived from the weld radiograph and are deemed
pertinent to defect identification were elicitated using a combination of knowledge
acquisition techniques [3], namely, document analysis, protocol analysis and goal-
decomposition method. Initially, an experienced radiographer was asked to "think
aloud" while carrying out the identification task on a sample of weld radiographs,
watched by two knowledge engineers. The engineers asked questions designed to
clarify the radiographer's actions and his working hypotheses. The entire session
was taped and analysed off-line.

Next, the radiographer was replaced by a knowledge engineer who acted as
the "eyes" for the radiographer. The radiographer had to decide whether the weld in
fact contained a defect, and if yes, what the defect was by asking the engineer
questions concerning the visual features which could seen on the radiograph. Again,
the entire session was taped and analysed off-line. The process was repeated a
number of times.

In document analysis, relevant documents defining the different types of
defect and their causes were studied and analysed. These documents provide
information relating to the deep knowledge of the problem domain, eg. the
underlying physics of the occurence of a defect and its physical properties.

The knowledge elicitation process identified the visual cues which relate a
defect and the degree of the defect severity to pictorial features that can be seen or
extracted from the weld radiograph. Figure 1 summarises some of the results of the
elicitation process. This process identified nine salient features deemed relevant to
defect identification. They are:
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1. skeleton length
2. intensity differece with respect to the weld
3. shape
4. width
5. size
6. orientation
7. location with respect to weld medial axis
8. noise like
9. dark feature

Furthermore, each of these visual features has associated with it a set of possible
attribute values. For example, skeleton length can be long, medium or short; shape
can be elongated or circular, etc.

3. Formulation of the Identification Problem Under D-S Theory

Under D-S theory, the weld defect identification problem can be posed as follows:

(a) The frame of discernment of the problem domain consists of the set of possible
weld defect hypotheses which for the purpose of this study has been restricted to five
defect types, ie. {gas pore (GP), crack (CK), excess penetration (EP), lack of root
fusion (LRF) and root concavity (RC)}.

(b) The set of evidence which will form the input to the identification system consists
of the set of nine visual features defined above.

Our approach is to design image processing techniques for extracting visual evidence
from an image of the weld radiograph. These pieces of evidence are subsequently
combined using the Dempster's rule to yield a set of belief intervals for the
competing defect hypotheses. A successful application of the theory depends on the
solutions to the following practical issues:

Given a piece of the evidence, the identification system has to decide

(a) what are the set of focal or defect hypotheses?
(b) what is the amount of belief mass to be assigned to the focal hypotheses?
(c) what is the degree of conflict in the body of evidence presented?

The theory itself gives no indication as to how these issues should be resolved for an
application. Frequently, the solutions to the first two issues are "fixed" by the
"domain experts" during system design. Consequently, the rationale behind why
certain belief mass is assigned to a particular hypothesis are not easily traced or lost
entirely. Since the total number of possible hypotheses is the power set of 8 , it is
not possible to predefine the belief mass to be assigned to each of the possible
hypotheses based on expert opinions. The following sections describe our solutions
to these issues.

3.1 Defect Hypothesis Generation

Here we adopt the strategy of hypothesis elimination and contend that disconfirming
evidence is a better source of information than confirming evidence. For example, if
we detected a circular shaped suspect defect, it is highly likely that it is not a crack
defect whereas the same piece of evidence only weakly suggests that the defect may
either be a gas pore, excess penetration, or metal inclusion - further measurement on
the intensity characteristic of this suspect defect can help to distinguish between
these possibilities. The above consideration led to the following hypothesis
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generation strategy:

Given a detected image feature

(a) the feature is matched against a knowledge base of defect objects and the set of
defect object H which does not match the detected feature are selected

(b) the set negation of H with respect to 0 is computed and is identified as the defect
hypothesis inducecd by the piece of visual evidence.

The term "does not match" here includes those defects which we know of its
existence but do not have any detailed information on the features being matched.
This way, we accept the possibility of ignorance and take a conservative approach of
using the body of evidence. Furthermore, we grant the benefits of the doubt to those
defects which we do not have detailed information about it. This strategy therefore
bias towards reducing the false negative rate of the identification results. The latter
is particularly important for safety critical applications. For each piece of the
evidence, this approach will generate at most one focal hypothesis.

3.2 Mass Assignment

From a probablistic point of view, the mass distribution over the set of focal
hypothesis induced by the evidence is related but not equivalent to the posterior
probability of the focal hypothesis given the evidence [4,5]. For this application, it
can be seen from figure 1 that the existence of a particular pictorial feature, eg. line-
like object, implies the existence of a number of possible defect types, e.g. crack or
lack of root fusion. Consequently, the focal hypothesis H of the evidence is in
general non-singleton and consists of a disjunction of singleton defect propositions,
ie. {hj, h2, ..., hj. Assuming that the occurrence of individual defect types are
independent, the posterior probability of the hypothesis H, given a piece of evidence
E, denoted by P(H\E) is:

P(H|E) = EP(h.|E)
h.eH

1

Furthermore, Bayes Theorem gives

P(h.|E)=P(E|h.).P(h.)/P(E)

where P(E\hJ, P(E), P(h} are the prior probabilities of the evidence given the
hypothesis, prior probability of the evidence and of the hypothesis respectively.

Assuming all defect types are equally probable, ie. P(hJ = 1/N, where N is the
cardinality of the frame of discernment, a semi-empirical mass function mE(H), due
to evidence E whose focal hypothesis is H, can be written as:

m_(H) = M.a(E)/[M.a(E) + (N-M).b(E)]
(4)

where the parameters a(E) and b(E) reflect the reliability of detecting the evidence
(visual feature); and M denotes the cardinality of the focal hypothesis set. The
remaining mass of (l-mE(H)) is assigned to 6 . Detail of the derivation of equation
(4) can be found in [6].

Since at most one focal hypothesis will be generated using our hypothesis
generation strategy, the associated mass function is termed a simple mass Junction.
For simple mass functions, the maximum number of competing hypotheses resulting
from combining M pieces of evidence is at most 2M, including 0. This sets the upper
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bound on the computational load of the reasoning process. By limiting the number of
visual evidence available to the reasoning process, we can estimate the complexity
and the worst case response time of the system [7].

3.3 Conflicting Evidence

Contradiction in the reasoning process can arise as a result of (a) errors in the
segmentation and feature detection processes; (b) error in the hypothesis or
conclusion that have been drawn from the evidence. When two pieces of conflicting
evidence is combined under D-S theory, certain amount of mass may accrue in the
empty set. The normalisation factor K in the Demspter's rule is designed to re-
distribute this "redundant belief among all the competing hypotheses. We contend
here that, for simple mass functions, the mass accrued in the empty set is related to
the degree of contradiction or inconsistency in the reasoning process and should be
retained throughout the reasoning process.

The space of unnormalised belief states introduced in [8] showed that this
new space can be mapped homomorphically onto the original Dempster's rule space.
This means that we can maintain the mass accrued in the empty set througout the
evidence accumulation process without losing any information concerning the
degrees of support and plausibility for the competing hypotheses. After the body of
evidence has been pooled, the mass remained in the empty set gives us an
assessment of the degree of conflict in the evidence and hence the validity of the
result of the defect identification.

4. System Overview

The identification system consists of two subsystems for image processing and
feature extraction and for evidence combination respectively. The former subsystem
which ran on a cellular array image processor [9] delineated the weld region from
the digitised radiograph image. Features which are darker or lighter than the
nominal weld intensity were subsequently enhanced and extracted by means of a
series morphological filtering operations [10]. For each of these suspect objects, a
set of feature measurements were made. These numerical measurements were
converted into a set of symbolic descriptors by means of a set of production rules
(Figure 2). These descriptors form the set of visual evidence to be used in the defect
identification process.

4.1 Preliminary Results

The evidence combination subsystem combined the set of visual evidence and
classified each suspect objects detected within the weld according to the belief
interval computed for each element (or defect type) of 0 and the mass accrued in the
empty set. The classification process works as follows: first the defect type* with
the most support and plausibility is identified, if the plausibility of the defect type is
less than the support mass accrued in the empty set, then the suspect object is
classified as being defect x, otherwise, the system concludes that the body visual
evidence presented is conflicting or inconsistent. The system at this point may be
programmed to either call for human intervention or declare that the suspect object
is an artefact.

A prototype system has been built to investigate the feasibility of this
approach. Preliminary results indicated that for a genuine defect, the body of visual
evidence derived from the image was highly consistent (with a very low or zero
mass for the empty set) and yielded a high degree of support and plausibility for the
corresponding defect hypothesis. On the other hand, if the suspect object was in fact
an artefact of the radiograph, the resulting body of evidence was highly inconsistent
and gave rise to a significant amount of mass accrued in the emtpy set. Figure 3
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gives an example of the system output.

5. Conclusions

This paper presents an evidential reasoning approach to weld defect identification.
Preliminary results indicated that our solutions to application issues such as
hypothesis generation and mass assignment strategies are highly appropriate to an
application domain where the body of evidence is uncertain and tends to weakly
support a disjunction of object classes.

The identification system has the following characteristics: (a) it is a strict
application of D-S theory, (b) it supports mass assignment to an arbitrary subsets of
object classes within the frame of discernment, (c) the mass accrued in the empty set
is used to assess the degree of conflict or inconsistency within the body of evidence.
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Defects Lack of Root Fusion Root Concavity Gas Pore Excess Penetration Crack Weld region

Location

Shape

Size

Density

Edge
Definition

Acceptability

Notes

Along medial axis of
weld region

very thin line like

very thin

dark, darkness depend
on depth of defect

very sharp

reject

can be confused as
a crack;

can occur between
interpass

olf-sided wrt
weld region axis

longitudinally
along weld axis;

irregular

5-8 mm long
2-3mm wide

darker than
intensity of base

metal

sharp

anywhere within
weld region

circular;
spore-like;

small;
0.3-0.5mm

dark

sharp

Anywhere witin
weld region

light blob;
irregular

2mm to half of
the width of weld

light;
density related to

thickness of excess
penetration

badly defined;

depend on depth
of concavity

severity of defect
can be assessed
from the size and
density of defect

region

depends on size of depends on thickness
pores and distance

between pores

cluster of pores
is referred to
as porosity

of excess
penetration

similar region which
extends across entire

width of weld is
normal: weld capping

longitudinal
or transverse
within weld

fine,
distinct;
line-like;

0.2-0.3 mm

dark;
transverse
cracks are

finer and not
as dark as
longitudinal

cracks

sharp

runs across
image

horizontal
rectangular

region

70mm long
10mm wide

light

not well-defined
merge gradually

with parent
metal density

reject weld

longitudinal
cracks can be

seen as multiple
fine, distinct,
and disjoint

lines

Figure 1 Image Characteristics of a sample of Weld Defects
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Rulos for infBring object shape, location and orientation:

If object_width/objectjongth > 0.7
and object_area is NOT noisejike

than object_shapa is circular

If object_width/objectjength < = 0.7
and object_area is NOT small

than object_shape is elongated

If objectarea < = 3
and objectjocation is naar imageboundary

than object is noisejika

If object is NOT noisejika
and object_area < 10

then objact_siza is small

If object_skeletonjength > LONGthen skeletonjength is long

If object.gradient < 30
and object is NOT small

then object is horizontal

If abs difflobject centroid - weld centroid)
> SIMILAR

than object is off_weld_axis

Figure 2. Example of Rules used in Iconic-Symbolic Conversion

Evidence (attribute value) - > { hypothesis }:

Medial_axisjength (long) = > (crack,RC,root,IQI,EP,LRF)
density wrt weld (different) = > (crack,RC,root,pore,EP,LRF)
shape(elongatad) = > (crack,RC,root,IQI.LRF)
width(thick) m > (RC.root.LRF)
size(medium) = > (crack,RC,root,IQI,EP,LRF)
orientation(horizontal) = > (crack,RC,root,EP.LRF)
location(near weld axis) » > (cracl,root,IQI,pore,inclusion,LRF)
spore-like(false) = > (crack,RC.root,IQI,pora.inclusion,EP.LRF)
dark faature(true) = > (crack,RC,pore,LRF)

" DS • ' -- singleton hypothesis (support, plausibility]

(crack) - 10.00, 0.3491
(RC) - [0.00, 0.1891
(root) - 10.00, 0.0651
(IQI) - [0.00, 0.004)
(pore) - [0.00, 0.0031
(inclusion) - [0.00,0.001
(EF) - [0.00,0.002]
(LRF) - [0.49,1.001
() - [0.00,1.00]

Identification:

Oafact candidate(s) with most support 10.49): (LRF)
Defect candidatels) with most plausibility (1.00): (LRF)
Number of hypotheses generated: 19
Identification is LRF

Figure 3. System Output of the Identification


