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Abstract

In an earlier paper [1] we have proposed a shape representation called the CLD (Chord
Length Distribution) which possesses many of the often-quoted desirable properties
of a shape representation. It also captures shape variability and complements an
object location method using belief updating which integrates low-level evidence and
shape constraints. Promising results on synthetic and real rigid objects were given.
This paper describes a development to the original definition which makes the location
method robust with respect to clutter. We give experimental results which demonstrate
the performance of the revised scheme on a class of flexible shapes, both singly and
overlapping.

We are currently engaged in a research project [see acknowledgements] concerned
with automated 2-D inspection of complex (industrial) assemblies. In common with
many machine vision applications we seek to exploit object shape and other
geometrical constraints to assist in locating objects in scenes and evaluating
interpretations with respect to expected appearance. To this end we need suitable
representations for shape (intra-object) and inter-object relationships together with
location and verification schemes capable of exploiting such representations. Ideally
we seek a scheme capable of addressing both shape and inter-object relationships in
a uniform manner.

We have argued [1] that a shape representation not only needs to satisfy
often-quoted [2,3] properties of being easily computable, unique, and exhibiting
proportional behaviour, but must also describe expected variability and invariance
within a class of shapes and be capable of describing a wide range of shape classes.
We have proposed such a representation called a Chord Length Distribution (CLD)
and an associated object location scheme which exploits and integrates geometrical
(shape) constraints with low-level (edge) evidence in a principled way, originally
based on ideas derived from probabilistic reasoning using networks [4].

Unlike many reported methods of applying shape models [5,6,7,8] our approach
does not work by matching image primitives to related model elements. Rather, it seeks
to label each point in an ordinate space with a likelihood of correspondence to the
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model. This likelihood is maximised with respect to the image evidence (edge data)
and the shape constraints in the model. The advantage of this approach is the late
commitment to an interpretation - the highest level primitive used is the pixel. This is
particularly important in the context of overlapping or occluded objects.

This paper presents further developments and investigations into the properties of
the CLD but first we give a brief outline of the CLD and the object location method.
The reader is referred to [1] for a detailed description.

1 CLD and OBJECT LOCATION

A shape is first defined by a set of n points x,.. xn. These may be equally spaced
around the boundary but this is not necessary and it may be the case that, for a given
value of n, an unequally spaced set of points may provide a more stable description,
particularly for man-made objects. The only requirement is that there is a consistent
method of selecting the points when the shape or family of shapes is defined. A
reference point x, is also defined for the object. The shape representation consists of
the set of probability distributions Pfo): i, j = 0.. n, i ̂  j for the distances r̂  between
all pairs of points x,, Xj. The arrangement is illustrated in Fig. 1.

Fig. 1: Geometry of the CLD representation. f'g- 2: P(XJ \xt)

The probability distributions can be estimated from a set of example images in
which the correct locations of the shape-defining points have been established
independently, usually via an interactive training procedure. When the objects of
interest are rigid, all the P(rg) will have low variance and the shape will be highly
constrained. When the objects of interest are variable, some, though generally not
all, of the P(rij) will have high variance and some aspects of the shape will be less
constrained. Various other properties are discussed in [1] but the only one of
relevance here is that the representation is unique except with respect to mirror
symmetry.

Object location depends on the fact that the radial distributions P(ry) allow us to
predict where Xj is given the position of x; by rotating the radial distribution about the
origin Xj = 0 as shown in Fig. 2.

The key to our method is to store a probability map P(x>) for each of the n points
which define the shape. Each location in the map is labelled with a likelihood of
finding x; there. We can compute a prediction for Xj at all points by correlating P(x>)
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with P(\j | Xj). For each x> in turn we compute (n-1) predictions for P(XJ) from each of
the other Xj and combine them with the original x; to produce new estimates for the
locations of each Xj. This belief updating process is repeated until a stable, maximally
consistent interpretation is reached.

The initial values of the maps are generated by combining predictions made from
the expected (prior) position of the reference point Xo and edge data obtained from
the image.

1.1 Behaviour With Clutter

The scheme outlined above is very successful in locating single instances of an object
in a field in the presence of noise [1]. However, the method can sometimes converge
to an incorrect result for multiple objects in the circumstance where the distance
between the objects is comparable with or less than the chord lengths of the objects.
It is easy to see how this can arise.

Fig 3: predictions using chords only Fig 4: maps after 4 iterations for two similar
polygonal objects (a) top ~ M • x< (b) bottom
•• x$, original map

Fig. 3 depicts 3 points x,, x2, x3 at known positions. The circles represent the
predictions for a 4th point X4, given x,, x2, x3. In this case the predictions combine in a
fashion analogous to a voting scheme as used by Hough transforms [9]. In our case,
the belief in the location of X4 is also weighted by the edge evidence, which may be
stronger at A,B,C than at D resulting in incorrect convergence of the updating
scheme.Fig. 4 shows an example with two similar polygonal objects whose vertices
are labelled x, to x5 clockwise from the bottom. Only one polygon icon is drawn. The
initial maps are bottom right. The maxima in the top left, top right and bottom left
diagrams should correspond to vertices x3, x, and x5 but clearly do not. (compare this
with Fig. 7).

This problem can be overcome by developing the CLD to remove the reflectional
symmetry ambiguity.
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1.2 The Revised CLD Representation

The modification is illustrated in Fig. 5. We have introduced angles 6,y which describe
the the angle that the normal to the boundary at x, has to be rotated anti-clockwise to
indicate the direction to xy. The choice of object-related direction is arbitrary - in fact
we use the direction of the image gradient at x, in our experiments. We record the
distributions P(%) as part of the model.

Fig 5: CLD with direction information Fig 6: P(XJ |« )

The conditional probability maps P(x, |XJ) become reduced annulli as depicted in
Fig. 6, where the angular dispersion is determined by the variance in 9,y. These new
maps produce far more constrained predictions and result in faster and more stable
convergence.

2 EXPERIMENTAL RESULTS

2.1 Nearby Objects

It is easy to see that the situation depicted in Fig. 3 is far less likely to occur when
conditional maps incorporating angle statistics are used. The results for the same
polygon pair as in Fig. 4 are shown in Fig. 7.

Fig 7: maps after 4 iterations for two similar
polygonal objects (a) top = « , x, (b) bottom
= Xj, original map (revised scheme)

Fig 8: a family (can) of worms
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In this case the local maxima in the maps correspond closely to the polygon vertices.
There is one maximum for each polygon vertex. Note also the improvement in the
rate of convergence using the revised scheme - the maxima are much better
localised.

2.2 Flexible Objects

We wish to demonstrate our claim that we can locate objects whose expected shape is
allowed to vary. To this end we have generated a set of axially symmetric ribbons
(worms) whose axes can bend and be of different lengths but whose widths are fixed.
Twenty examples taken from this set are shown diagrammatically in Fig. 8 to indicate
the kind of variation present. The CLD in this experiment uses 12 points, one at each
end of the worm and 5 pairs equally spaced along its length.

Fig 9(a): noisy worm + Pfa) after 0,1,2
iterations

Fig 9(b): noisy worm with lo-
cated points superimposed

Fig 9(c): initial map data with located points

Fig. 9(a) shows a typical worm with 20% noise added. Also shown are the states of

the maps for point x, after 0,1 and 2 iterations of the updating scheme. Fig. 9(b) shows
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the worm at a larger scale. The 12 located points are superimposed. Fig. 9(c) also
shows the initial state of the maps P(Xi), which were generated via a morphological
edge operator [10]. It is an indication of the power of the method that the points have
been located so well considering that no prior integration of the obviously poor edge
data has been made.

23 Overlapping Objects

We have investigated the behaviour of the revised scheme by applying the model to

images of overlapping worms. Fig. 10(a) shows an example in which 4 possibilities

arise for the position of x,. Figs. 10(b) and 10(c) show 2 solutions obtained by

selecting the south and west candidate positions for x, and continuing the iterations.

The other 2 solutions are similar and differ only in the labelling of the points.

Fig 10(a): crossed worms and maps for point xt

after 0,1,2 iterations
Fig 10(b): first solution

Fig 10(c): second solution

Fig. 11 shows a second case where one of the two solutions fails to include one of the

extreme ends of the worm. Probable causes for this behaviour are that (a) the true
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distributions for the model parameters are nearer to uniform over an interval than
normal as assumed by the model, and so the predictions are weighted against
examples at the edges of the distribution as is the case here, and (b) the object edge
directions are corrupted in regions of overlap, giving rise to misleading predictions.
We have yet to verify whether either of these possibilities is responsible.

Fig 11: a second example showing a failure to locate an extreme end in one case

3 DISCUSSION

As the figures above show, the revised CLD representation shows encouraging
behaviour in locating objects whose shape is difficult to model explicitly, both in the
presence of noise and clutter. Some further work is required to evaluate robustness
when occlusion is present, but the results are promising. The method copes with both
rigid and flexible objects. As expected, convergence is faster for rigid objects because
of the more constraining predictions. Experiments (not described here due to lack of
space) indicate that location performance increases with the number N of points in
the model, and that digitisation errors can occur if the inter-point distances r^ are
small, typically 5 pixels or less. These factors limit the size of the smallest object that
can be located.

The main drawback of the method is that it is slow - O(N2a2b2) where N is the
number of points in the model, a is the typical prediction mask size and b is the region
of interest size in pixels. On a SUN3/160 the 12-point model above on a 64 * 64
region typically takes hours per iteration (66 convolution-type predictions). The
predictions can be expensive because the mask size is determined by the size of the
object and can be large. Although we can propose a number of ad-hoc tricks to
reduce this complexity, we are unlikely even on a modern workstation to achieve
execution times which are practical for a working inspection system.

Despite this we can fruitfully apply the technique to multiple objects. By choosing
object-defining points or derived reference points (the xo in Fig. 1) for several
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objects in a scene, we can capture inter-object spatial relationships using a CLD and
exploit the arrangement in a top-down (predictive) way to limit search regions. The
ability of the CLD to capture variability is being investigated mathematically with a
view to applications using other search techniques which use shape generation. Early
work in this direction is described in a companion paper [11] submitted to BMVC91.
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