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Abstract

This paper presents a general method for combining stereo surfaces us-
ing a Kalman filter. A measure of error in surface representation is sug-
gested, and the work shows how a set of surfaces may be combined to
give a single surface which minimises this measure. The analysis shows
how a stochastic surface may be generated using stereo, and how errors
in surface-to-surface registration may be modeled. The cases of multiple,
mutually-occluding surfaces and unknown three-dimensional camera mo-
tion are considered. Performance is analysed using semi-artificial data.
The results are important to multi-sensor fusion and automatic model
generation.

The problem of estimating a single optimal surface from noisy measure-
ments occurs in many vision and robotics applications [1, 2, 3, 4]. Here it is
considered in the context of building a description of a complex object or envi-
ronment using stereo reconstruction from many viewpoints [5]. A definition is
offered of the optimal surface to represent a set of measured surfaces, and the
paper shows how it may be found using the Kalman filter framework. Models of
errors in stereo surface reconstruction derived from [6] and [7], and of surface-
to-surface registration [8] are presented. Finally performance is analysed using
artificial and real data.

Other authors have used Kalman filtering to incrementally combine visual
measurements [1, 9}. This paper differs from previous work by representing
uncertainty in surface location rather than features such as corners [9] and
lines [1] and so relates most closely to [7]. However their work is extended to
allow unknown three-dimensional camera motion and model multiple mutually-
occluding surfaces. The results presented are of general interest to active vision,
sensor fusion and automatic model generation.

1 PROBLEM FORMULATION
Consider N surfaces, S\...SN. We want to find the best representation of these
surfaces by a single surface So defined by a regular grid of spline control points
relative to an origin O (figure 1).

We define the error in surface fit as follows —
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Figure 1: Surfaces Sk provide measurements of model control points.

For each control point Cij representing So, draw a line through the point
location and 0. Find the intersection points pk of this line with each of the
surfaces Sk- The error in each control point is given by

where a? is the variance of the position of each

We define the optimal solution as the surface So which minimises this error
summed over all the control points defining So- Having thus formulated the
problem as a least-squares combination of noisy measurements, and assuming
we can find values for the pk and a~,k, we turn to the Kalman filtering frame-
work to find the optimal solution.

2 OUTLINE OF SOLUTION
A description of the environment is built by incrementally combining surface
estimates from multiple viewpoints. Using the Kalman filter framework, we
define the system model as the best estimate of the surface visible from some
given viewpoint. Surface estimates generated from stereo pairs are treated
as measurements of this model. The transformation from each measurement
coordinate frame to the model frame is given by a homogeneous matrix H,
determined by surface-to-surface registration.

Both the model surface and measured surfaces are represented by regular
grids of spline control points giving the inverse depth d — \ of the surface from
its origin. A control point is free to move on a line passing through the control
point and its origin. Each control point is modelled as a Gaussian distribution
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about its mean value with variance a2
d.

Each measured surface is integrated with the system model by intersecting
lines through the model control points with the surface, to give a measured
value for each model control point. An estimate of the variance of this mea-
surement is calculated from the variance of the original stereo measurements
and a sensitivity analysis of the registration process. A decision on whether
the measurement relates to the model control point or to some other surface
not represented in the model is taken by considering the difference between
measured and predicted values relative to their positional uncertainty. Finally
the system model is updated using Kalman filtering.

3 STEREO VARIANCE
The stereo algorithm considered here is based on Nishihara's [6]. This performs
correlation matching using a coarse to fine strategy on an image pair convolved
with a. difference of Gaussians filter and thresholded. The autocorrelation sur-
face of the processed image close to the origin approximates a cone [6]. Hence
during stereo matching, sections through the cross-correlation surface along
epipolar lines are expected to have the form —

•$(v) = av2 + bv + c

where ${v) is the cross-correlation at disparity v. A parabola, can be fitted
from three correlation measurements allowing the peak correlation vp to be
determined with sub-pixel accuracy. An estimate [7] for the variance of the
location of the peak is given by

where a\ is the variance of the image noise. Nishihara [6] estimates this as

T IV

a» = 47

where w is the width of the central region of the difference of Gaussians con-
volution, and ;• is the radius of the the image patch correlated. Intuitively the
confidence in of the peak disparity estimate increases with the "sharpness" of
the correlation surface, giving more weight to measurements of highly textured
regions parallel to the camera image planes.

Approximating the two cameras as parallel, with normalised focal length
and camera separation, the peak disparity vp, is related to the depth z by

vP = 1/z

Hence, following [4, 7] we work with values d = \, with variance given by

n w



163

4 REGISTRATION ERROR

A measured surface is related to the model by a coordinate transformation
given by a rotation R, a translation T, and a scale factor A. These must be
found by a registration process prior to surface fusion. The parameters R, T,
and A are estimated by minimising the error vector

Ei = \\R(Ui - T) - vi\2

for corresponding three-dimensional points w; and i>i in the two coordinate
frames. A fuller discussion is found in [8].

It is necessary to analyse how the errors in calculating the transformation
parameters affect the errors in the transformed measurements. We can describe
the coordinate transformation between the «,: and v; by the homogeneous ma-
trix II —

Vi = HUJ

The errors Ac,; in the Vj, resulting from perturbations A A, A/?., and AT in the
transformation parameters are approximated during registration by

Vi + Ai>i « IIin + Ei

And so
Avi « Ei

Hence, in this work, the variances of subsequent transformed measurements
due to registration error are approximated by the variance of the error vector
Ei found during registration.

a; « a-E

5 SURFACE CLUSTERING

In the general case of multiple, mutually-occluding surfaces, there are two
sources of error not modelled in the framework (figure 2). The first is caused
by interpolation in the measured surface over depth discontinuities at object
boundaries — on projection this results in the surface appearing much closer
than the model surface.

The second is the possibility that the surface being integrated is not visible
from the model viewpoint. This occurs when the measured surface occludes
itself on projection, or when some surface already represented in the model
is occluding. The self-occlusion problem can be solved by z-buffering during
projection [5] but occlusion by other surfaces is more problematic.

The approach taken here, in common with [1, 2] is to use the covariance
information derived previously to cluster the points onto single surfaces. We
reject, measurements which are far from the existing surface description rela-
tive to the certainty in the position of both the predicted and measured model
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model point

X Model control points

Object surface

Figure 2: Surface clustering.

points.

In the results shown a measurement d of control point c is rejected if

The constant threshold term is somewhat arbitrary. A side effect is to pro-
vide further smoothing of the data, eliminating the effects of outlying points
caused by, for example, ambiguous stereo matches, which are in any case not
modelled well by Gaussian noise.

6 INTEGRATION

The measured surfaces are related to the model by interpolating values for each
model control point, where its line of positional uncertainty intersects with the
surfaces. Interpolation is necessary since control points on the stereo surface
will not generally project onto control points on the model. Additionally, the
positional uncertainty for the measured and model control points lie on non-
intersecting lines, and the uncertainty of the point of intersection of the surface
with model control point directions has a bi-modal distribution. The prob-
lem is linearised after the fashion of [7] by approximating the uncertainty in
interpolated stereo control points as co-linear with the model point uncertainty.

Hence if a measured control point with inverse depth d is transformed to a
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fragment

Figure 3: Interpolation of measurements.

value of d' in the model coordinate frame,

d' = ad

then
2 ^ 2 I 2

where a\ is the variance of the registration error vector.

An efficient implementation of the surface fusion is as follows —

• Using a triangular tesselation of the measured surface (figure 3), sets of
three points are projected onto the model coordinate frame. Model con-
trol points cl intersecting this triangle are found by back-projection, and
corresponding measured values for the inverse depth r/,; and variance crj
are found using bi-linear interpolation.

• The Kalman filtering framework can now be used to find new estimates
for the model control points cf and associated variances qf as follows;

The Kalman gain is calculated as

The new model control points are given by

cf - c~

and their variances given by

qf =f = (1 - Ki)q-
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Figure 4: Test image mapped onto surfaces.

7 RESULTS

The method has been tested on three artificially generated sequences of stereo
images. Each stereo pair is generated by mapping the poster (figure 4) onto a
test surface and rendering it from two simulated viewpoints. Stereo analysis
of each image pair gives a depth-map which is incrementally combined with
previous measurements as discussed. However the transformation between suc-
cessive frames is assumed to be known exactly.

The first sequence simulates eight stereo views moving towards a fronto-
parallel plane. Graphs of the measured and predicted mean square error in \/z
are shown in figure 5(a). The error is seen to fall off particularly sharply since
measurements closer to the surface are more accurate.

The second sequence (figure 5(b)) shows operation on the same stereo views
moving away from the plane. The initial estimates are thus much more accu-
rate. The final mean squared error has, as expected, the same value (approxi-
mately 0.02 of the simulated camera separation) for both image sequences.

The third image sequence simulates movement towards the sinusoidal sur-
face shown in figure 6(a). The measured error (figure 6(b)) falls off more slowly
in this case, perhaps because of the difficulty in reconstructing steeply sloping
surfaces using stereo. The surfaces reconstructed from one (figure 6(c)) and
five (figure 6(d)) stereo pairs are shown.

8 CONCLUSION

A method has been presented for incrementally combining stereo surfaces in the
context of visual model generation. The surface fusion minimises the measure
of error in surface representation proposed. The results on semi-artificial data
appear very promising.

Using surfaces rather than features to build a model allows information de-
rived from points matched within any stereo pair to be used, rather than those
which can be tracked through a sequence.
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The surface representation is appropriate for model generation and some
applications, for example visualisation and tracking [10]. Other representations
can be derived from it after model-building is complete. For example CAD
models may be built by fitting primitives [2, 11] or octree models as outlined in
[12]. It is more difficult to retrospectively fit a surface over three-dimensional
feature locations since viewpoint occlusion information is lost. Further work is
also of interest to combine surface descriptions across modalities.
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Figure 5: Results for plane sequence.
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Figure 6: Results for sine sequence.


