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Abstract

This paper describes the use of a low level, computationally inexpensive
motion detector to initiate a higher level motion tracker based on an
elliptical active contour or snake. The contour tracker is in turn used to
direct a camera mounted on a robot arm. to track head shaped objects.

1 Introduction
An imperative for any autonomous agent which relies on visual perception is the
ability to interpret time-varying imagery.

A cursory glance at the literature would suggest that the issues of primary con-
cern are the computation of an explicit representation of visual motion from the
imagery, and its subsequent analysis in terms of structure of the environment and
the motion of the camera relative to that environment. A somewhat more careful
study, however, would show that there is a range of uses for which motion- interpre-
tation may be put at an earlier level than computation of egomotion and structure
from motion. Amongst the more important of these are (i) alarms — the detection
and flagging of things of interest or danger in the image; (ii) segmentation — the
dividing up of the scene into separate cohesive areas; and (iii) tracking — to re-
tain things of interest on the sensor by nulling their motion (this has the additional
advantage tliat background objects are effectively removed by motion blur).

The predominance of the approach of recovery of visual motion followed by
structure from motion or egomotion computation has had three unfortunate con-
sequences. First, the three tasks mentioned above are rather under-explored. Sec-
ondly, the tasks have often been explored in a narrow way, confined within some
existing framework of visual motion and structure from motion algorithms. Thirdly,
and in contrast, other often more direct and promising methods have been exper-
imented with in isolation from existing visual motion and structure from motion
algorithms.

We suggest that to deal with the rich variety of world tasks that demand motion
understanding — involving interaction both with other autonomous agents and with
the environment — requires a similarly rich variety of "motion sensors". Such sensors
should range from the crude, fast and robust, to the more refined and stately, and
should utilize more than the single conventional representation of image motion.
The cruder processes can run quasi autonomously, but may act as bootstraps for
the more sophisticated ones and, as knowledge sources, should report not only their
motion information but also its reliability.
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The proposed use of several parallel motion detectors, or cooperating motion
processes, differs from the most successful current motion systems for navigation
[5, 11] which, being designed around a single activity, use a single method of recovery
of and interpretation of image motion.

In this paper we give a first demonstration of this theme. There are three main
stages to consider. The first is event detection. Initially the camera is stationary.
A frame differencing method detect "events" which occur in scene, and if judged of
sufficient interest the tracker is initialized by placing an ellipse around the detected
region of interest. The second is the ellipse tracker itself. The ellipse acts as a blob
tracker applied to the image. It tracks points of high spatial derivative around its
perimeter. The five parameters of the ellipse are updated using a Kalman filter.
Finally, the camera is moved to keep the centre of the ellipse fixed at the centre of
the image. These are discussed in more detail now.

2 Event detection

The event detector we use here uses straightforward grey-level subtraction. Ullman
[10] noted that although direct use of grey-level operations is inadequate to compute
long-range motion in both human and computer vision systems, intensity-based
processes were adequate for an early warning system, detecting changes and directing
attention. They might also be useful in detecting discontinuous boundaries where
velocity in the visual field change abruptly.

For a static camera, image subtraction between successive images of the same
scene will act as a high pass filter, provided that the temporal difference is not
too great (the sampling theorem suggests the necessary image rate). To reduce
the effects of noise it is best to smooth the images by convolving with a Gaussian
both spatially and temporally. A key assumption however is that areas of high
temporal difference correspond to areas of motion interest. There are of course
several problems with this assumption, problems which are well known from more
sophisticated gradient-based motion analysis. These are that an object of similar
intensity to its background will be almost invisible, sudden changes in lighting,
specularities and shadows will produce high frequency change, and the method will
run into problem if the ego motion is not zero.

Despite these difficulties Nagel, Jain and coworkers [7] devised several practical
methods for grey-level change detection. However by [6] the method had become
one of such statistical sophistication that it ran very slowly indeed. The processes
gave exceptionally reliable change detection from just two successive frames, but
was no longer faithful to its original goal of rapid event detection.

The approach of cooperating processes is rather different. Rather than "improve"
the event detection process until it becomes cumbersome, we require it to be fast,
but allow it to make mistakes. It is the role of the more sophisticated concurrent
process to decide whether the events are worth pursuing.

In our work, simple frame rate image differencing has been used to detect events.
Images are captured using a Datacube Digimax and passed through a VFIR-II where
they are convolved with a Gaussian. The current convolved image is subtracted from
the convolved frame stored from the previous frame time to provide a difference
signal, and is also passed to a framestore for use in the next frame time. The
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subtracted signal is then subsampled to give a 32 x 32 image which is transferred
to a Sun4 workstation. A grey-level difference threshold is applied to the difference
image, and if this is exceeded an event is marked in the event map. In our indoor
experiments, a difference threshold of 20 grey-levels has been found suitable.

The elliptical snake expects to track quite large objects, and so a snake is only
initialized in response to several nearby events being triggered in the event map.
A simple graph colouring algorithm links active events that have active neighbours
(these need not be nearest neighbours). If the number of events in a clique exceeds an
activity threshold then the tracker is initialized. At present, the smallest rectangle
containing all the active grid points is determined and the ellipse is initialized so
that it just fits within it.

3 Tracking with an elliptical snake

The use of an ellipse as a blob tracker has a number of advantages over more tradi-
tional snakes [8]. It shares with spline based snakes [4, 3] the advantage of a small
number of parameters — five — the centre (x,y), half length of major and minor
axes (a, b) and the orientation 6. Moreover, because of its structure it does not suffer
from the two common failings of snake tracking, viz. (i) part of the snake gets left
behind and so the curve straddles front and back of the blob and (ii) the snake crosses
itself, or folds and partially collapses onto itself. It is difficult to recover from these
situations, and tracking ability is obviously impaired. The principal disadvantage
of using a snake structure is, of course, that it is model-based, introducing strong
expectations about the scene. If the image area on which the ellipse is initialized
is not elliptical, only part of the snake will be comfortably attached to the area's
boundary.

Deformable templates based on ellipses were first used in ref [9]. Their ellipse
tracker was computationally costly because iterative update of ellipse parameters
involved forming a 2D attractor field and integrating the derivative of this around
the ellipse perimeter. The update algorithm used here improves on this by using a
small number (10-20) of evenly spaced points selected around the ellipse perimeter.
From each of these we search up to some fixed distance along the local normal to
the ellipse for the nearest image edge. Given the new set of edge points, the new
ellipse is fitted using Bookstein's algorithm [2]. This avoids the computation of a
2D attractor field (only a ID search is needed) and provides a one shot, rather than
an iterative, update procedure.

Reducing search with a Kalman Filter

To reduce search further when fitting the elliptical snake we have exploited prediction
from a Kalman Filter applied to the five parameters describing the ellipse. For each
parameter we run a polynomial filter which assumes constant acceleration of the
parameter [l]. The model assumes no correlation between the different parameters,
and so, for example, the update condition for x is
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where AT is the timestep between updates, vacc is a zero-mean white noise sequence
modeling the effects of non-zero rate of change of acceleration (-^x = vacc) and vpos

is a zero-mean white noise sequence which accounts for model errors, particularly
motion in jerks. The motion of the target is observed by a sensor which only
measures position:

where zx is observation of x, and w is a zero-mean white noise sequence.

4 Experiments

Figures 1-3 show the output from a typical trial run of the entire system.
Figure l(a) shows the initially stationary head and (b) the result of moving it.

The small boxes are the active outputs in the 32 x 32 event map found as a result
of differencing, and the larger box is a bounding box for this group. It is into this
box that the snake is initialized.

Figure 2(a) shows the situation some frames later. The snake is well attached
to the head outline. The box draw on this image is the search region for the ellipse
updating. Figure 2(b) shows the snake remaining attached as the head moves against
a static background (note that the no-smoking sign remains stationary in the image).

Figures 3(a) and (b) show the snake being used to drive the robot arm holding
the camera. The Adept SCARA arm was programmed to only use 2 degrees of
freedom: translation along and rotation about the image y axis. The camera moves
to maintain the ellipse at the centre of the image. Notice now that as the head
is moved it remains central on the image, but the static background moves on the
image.

5 Conclusions

In this paper we have argued that motion detection and motion understanding
require a rich variety of mechanisms and representations which should behave as
knowledge sources. There is a need and — as we demonstrate — a use for very crude
robust motion processing which can be used to initiate more sophisticated processes.
Although the crude processes will make mistakes, the burden of assessment should
be on the more sophisticated processes.

We wish to pursue these ideas to include further processes based on conventional
2D motion representations and to explore how these can interact to drive camera
motions.

For the particular pair of processes reported here, there are several further in-
vestigations that should be made. Of a routine nature, first, the snake initialization
could be improved by using the convex hull of the connected active grid points as
initial ellipse fitting data, and second the effect of the Kalman filter covariance ma-
trix on the tracker is as yet poorly charted. More interestingly, a versatile tracker
would be created if closed snakes could split and merge. This would allow the effects
of occlusion to be taken into account e.g. a snake could spilt in two if two objects
in the same vicinity travel in different directions.
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Figurel: This figure shows the initialization of a window of attention about the head,
the. small boxes indicate areas of temporal intensity difference, and the bounding box
of these indicates the window of attention.

Figure2: The ellipse is defined by the window of attention. The larger box around
the ellipse shows the image search area, the small box marks the ellipse centre.

Figure.3: The head begins to move past the no smoking sig7i and is tracked by the
camera.
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